Com express

User Manual

COMe-B75 CT6

COM-Express[™] Type 6 Module with the AMD Ryzen[™] Embedded V1000 Processors

REVISION HISTORY

Revision	Date	Note	Rif	
1.0	16 October 2018	First Release	SB	
1.1	29 October 2018	Factory restore switch documentation added Memory specifications updated in par. 2.2 only Errors corrected in paragraph 4.3.21.3	SB	

All rights reserved. All information contained in this manual is proprietary and confidential material of SECO S.p.A.

Unauthorised use, duplication, modification or disclosure of the information to a third-party by any means without prior consent of SECO S.p.A. is prohibited.

Every effort has been made to ensure the accuracy of this manual. However, SECO S.p.A. accepts no responsibility for any inaccuracies, errors or omissions herein. SECO S.p.A. reserves the right to change precise specifications without prior notice to supply the best product possible.

For further information on this module or other SECO products, but also to get the required assistance for any and possible issues, please contact us using the dedicated web form available at http://www.seco.com (registration required).

Our team is ready to assist you.

INDEX

Chapter	1. INTRODUCTION	5
1.1	Warranty	6
1.2	Information and assistance	. 7
1.3	RMA number request	. 7
1.4	Safety	8
1.5	Electrostatic Discharges	8
1.6	RoHS compliance	
1.7	Terminology and definitions	
1.8	Reference specifications	
Chapter	2. OVERVIEW	2
2.1	Introduction	13
2.2	Technical Specifications	14
2.3	Electrical Specifications	15
2.3.	9	
2.3.	!	
2.4	Mechanical Specifications	
2.5	Block Diagram	
Chapter		
3.1	Introduction	
3.2	Connectors description	
3.2.		
3.2.		
3.2. 3.2.		
3.2. 3.2.	·	
Chapter		
4.1	Aptio setup Utility	
4.1	Main menu	
4.2		
٦،∠،		, ,

4.3	Ad	dvanced menu	52
	4.3.1	AMD CBS submenu	53
	4.3.2	AMD PBS submenu	55
	4.3.3	Intel® I210 Gigabit Network Connection – <i>Mac</i> Address submenu	55
	4.3.4	Battery Failure Manager submenu	56
	4.3.5	Trusted computing submenu	56
	4.3.6	TPM selection submenu	56
	4.3.7	ACPI Settings	57
	4.3.8	SATA presence submenu	57
	4.3.9	DXIO Settings submenu	57
	4.3.10	S5 RTC Wake Settings submenu	59
	4.3.11	Serial Port Console Redirection submenu	60
	4.3.12	CPU configuration submenu	61
	4.3.13	AMI graphic Output Protocol Policy submenu	61
	4.3.14	PCI Subsystem Settings submenu	61
	4.3.15	Network Stack configuration submenu	62
	4.3.16	CSM configuration submenu	63
	4.3.17	NVMe configuration submenu	63
	4.3.18	USB configuration submenu	64
	4.3.19	Main Thermal Configuration submenu	64
	4.3.20	SMBIOS Information	64
	4.3.21	Embedded Controller submenu	65
4.4	Ch	hipset menu	70
	4.4.1	South Bridge Configuration submenu	70
	4.4.2	North Bridge Configuration submenu	70
4.5	Se	ecurity menu	72
	4.5.1	Secure Boot submenu	
Disak	oled / I	Enabled	73
4.6		oot menu	
4.7		ave & Exit menu	
•	oter 5.	• •	
5.1	The	nermal Design	77

Chapter 1. INTRODUCTION

- Warranty
- Information and assistance
- RMA number request
- Safety
- Electrostatic Discharges
- RoHS compliance
- Terminology and definitions
- Reference specifications

1.1 Warranty

This product is subject to the Italian Law Decree 24/2002, acting European Directive 1999/44/CE on matters of sale and warranties to consumers.

The warranty on this product lasts 1 year.

Under the warranty period, the Supplier guarantees the buyer assistance and service for repairing, replacing or credit of the item, at the Supplier's own discretion.

Shipping costs that apply to non-conforming items or items that need replacement are to be paid by the customer.

Items cannot be returned unless previously authorised by the supplier.

The authorisation is released after completing the specific form available on the web-site http://www.seco.com/en/prerma (RMA Online). The RMA authorisation number must be put both on the packaging and on the documents shipped with the items, which must include all the accessories in their original packaging, with no signs of damage to, or tampering with, any returned item.

The error analysis form identifying the fault type must be completed by the customer and must accompany the returned item.

If any of the above mentioned requirements for RMA is not satisfied, the item will be shipped back and the customer will have to pay any and all shipping costs.

Following a technical analysis, the supplier will verify if all the requirements for which a warranty service applies are met. If the warranty cannot be applied, the Supplier will calculate the minimum cost of this initial analysis on the item and the repair costs. Costs for replaced components will be calculated separately.

Warning!

All changes or modifications to the equipment not explicitly approved by SECO S.p.A. could impair the equipment's functionality and could void the warranty

1.2 Information and assistance

What do I have to do if the product is faulty?

SECO S.p.A. offers the following services:

- SECO website: visit http://www.seco.com to receive the latest information on the product. In most cases it is possible to find useful information to solve the problem.
- SECO Sales Representative: the Sales Rep can help to determine the exact cause of the problem and search for the best solution.
- SECO Help-Desk: contact SECO Technical Assistance. A technician is at disposal to understand the exact origin of the problem and suggest the correct solution.

E-mail: technical.service@seco.com

Fax (+39) 0575 340434

- Repair centre: it is possible to send the faulty product to the SECO Repair Centre. In this case, follow this procedure:
 - o Returned items must be accompanied by a RMA Number. Items sent without the RMA number will be not accepted.
 - o Returned items must be shipped in an appropriate package. SECO is not responsible for damages caused by accidental drop, improper usage, or customer neglect.

Note: Please have the following information before asking for technical assistance:

- Name and serial number of the product;
- Description of Customer's peripheral connections;
- Description of Customer's software (operating system, version, application software, etc.);
- A complete description of the problem;
- The exact words of every kind of error message encountered.

1.3 RMA number request

To request a RMA number, please visit SECO's web-site. On the home page, please select "RMA Online" and follow the procedure described.

A RMA Number will be sent within 1 working day (only for on-line RMA requests).

1.4 Safety

The COMe-B75-CT6 module uses only extremely-low voltages.

While handling the board, please use extreme caution to avoid any kind of risk or damages to electronic components.

Always switch the power off, and unplug the power supply unit, before handling the board and/or connecting cables or other boards.

ļ

Avoid using metallic components - like paper clips, screws and similar - near the board when connected to a power supply, to avoid short circuits due to unwanted contacts with other board components.

If the board has become wet, never connect it to any external power supply unit or battery.

Check carefully that all cables are correctly connected and that they are not damaged.

1.5 Electrostatic Discharges

The COMe-B75-CT6 module, like any other electronic product, is an electrostatic sensitive device: high voltages caused by static electricity could damage some or all the devices and/or components on-board.

!

Whenever handling a COME-B75-CT6 module, ground yourself through an anti-static wrist strap. Placement of the board on an anti-static surface is also highly recommended.

1.6 RoHS compliance

The COMe-B75-CT6 module is designed using RoHS compliant components and is manufactured on a lead-free production line. It is therefore fully RoHS compliant.

1.7 Terminology and definitions

ACPI Advanced Configuration and Power Interface, an open industrial standard for the board's devices configuration and power management

AHCI Advanced Host Controller Interface, a standard which defines the operation modes of SATA interface

API Application Program Interface, a set of commands and functions that can be used by programmers for writing software for specific Operating

Systems

BIOS Basic Input / Output System, the Firmware Interface that initializes the board before the OS starts loading

DDC Display Data Channel, a kind of I2C interface for digital communication between displays and graphics processing units (GPU)

DDR Double Data Rate, a typology of memory devices which transfer data both on the rising and on the falling edge of the clock

DDR4 DDR, 4th generation

DP Display Port, a type of digital video display interface

DVI Digital Visual interface, a type of digital video display interface

eDP embedded Display Port, a type of digital video display interface developed especially for internal connections between boards and digital displays

GbE Gigabit Ethernet

Gbps Gigabits per second

GT/s Gigatransfers per second

GND Ground

GPI/O General purpose Input/Output

HD Audio High Definition Audio, most recent standard for hardware codecs developed by Intel® in 2004 for higher audio quality

HDMI High Definition Multimedia Interface, a digital audio and video interface

12C Bus Inter-Integrated Circuit Bus, a simple serial bus consisting only of data and clock line, with multi-master capability

LPC Bus Low Pin Count Bus, a low speed interface based on a very restricted number of signals, deemed to management of legacy peripherals

LVDS Low Voltage Differential Signalling, a standard for transferring data at very high speed using inexpensive twisted pair copper cables, usually used

for video applications

Mbps Megabits per second

N.A. Not ApplicableN.C. Not ConnectedOS Operating System

PCI-e Peripheral Component Interface Express

PSU Power Supply Unit

PWM Pulse Width Modulation

PWR Power

PXE Preboot Execution Environment, a way to perform the boot from the network ignoring local data storage devices and/or the installed OS

SATA Serial Advance Technology Attachment, a differential half duplex serial interface for Hard Disks

SD Secure Digital, a memory card type

SDHC Secure Digital Host Controller

SDIO Secure Digital Input/Output, an evolution of the SD standard that allows the use of the same SD interface to drive different Input/Output devices,

like cameras, GPS, Tuners and so on

SM Bus System Management Bus, a subset of the I2C bus dedicated to communication with devices for system management, like smart batteries and

other power supply-related devices

SPI Serial Peripheral Interface, a 4-Wire synchronous full-duplex serial interface which is composed of a master and one or more slaves, individually

enabled through a Chip Select line

TBM To be measured

TMDS Transition-Minimized Differential Signaling, a method for transmitting high speed serial data, normally used on DVI and HDMI interfaces

TTL Transistor-transistor Logic

UEFI Unified Extensible Firmware Interface, a specification defining the interface between the OS and the board's firmware. It is meant to replace the

original BIOS interface

UMA Unified Memory Architecture, synonym of Integrated Graphics, uses a portion of a computer's system RAM dedicated to graphics rather than

using dedicated graphics memory only.

USB Universal Serial Bus V REF Voltage reference Pin

xHCl eXtensible Host Controller Interface, Host controller for USB 3.0 ports, which can also manage USB 2.0 and USB1.1 ports

1.8 Reference specifications

Reference	Link
ACPI	http://www.uefi.org/acpi/specs
AHCI	http://www.intel.com/content/www/us/en/io/serial-ata/ahci.html
Com Express	https://www.picmg.org/openstandards/com-express/
Com Express Carrier Design Guide	http://picmg.org//wp-content/uploads/PICMG_COMDG_2.0-RELEASED-2013-12-061.pdf
DDC	http://www.vesa.org
DP, eDP	http://www.vesa.org
Gigabit Ethernet	http://standards.ieee.org/about/get/802/802.3.html
HD Audio	http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/high-definition-audio-specification.pdf
HDMI	http://www.hdmi.org/index.aspx
12C	http://cache.nxp.com/documents/user_manual/UM10204.pdf?fsrch=1&sr=5&pageNum=1
LPC Bus	http://www.intel.com/design/chipsets/industry/lpc.htm
LVDS	http://www.ti.com/ww/en/analog/interface/lvds.shtml http://www.ti.com/lit/ml/snla187.pdf
PCI Express	http://www.pcisig.com/specifications/pciexpress
SATA	https://www.sata-io.org
SD Card Association	https://www.sdcard.org
SM Bus	http://www.smbus.org/specs
UEFI	http://www.uefi.org
USB 2.0	http://www.usb.org/developers/docs/usb20_docs/usb_20_040816.zip
USB 3.0	http://www.usb.org/developers/docs/usb_30_spec_070113.zip
xHCl	http://www.intel.com/content/www/us/en/io/universal-serial-bus/extensible-host-controler-interface-usb-xhci.html?wapkw=xhci
AMD Ryzen [™] Embedded V1000	https://www.amd.com/en/products/embedded-ryzen-v1000-series

Chapter 2. OVERVIEV

- Introduction
- Technical Specifications
- Electrical Specifications
- Mechanical Specifications
- Block Diagram

2.1 Introduction

The COMe-B75-CT6 is a COM Express® type 6, Compact Form Factor, based on the AMD Ryzen™ Embedded V1000 processors. A complete list of processors available is detailed in the next chapter.

All of these SoCs are Dual- or Quad-Core, Dual Thread, offer a 64-bit Instruction set and provide direct access to the memory, which is available on two DDR4 SODIMM memory modules (speed up to 3200). Both ECC and non-ECC memory modules are supported. The total amount of memory available is OS dependant.

All SoCs integrate an AMD RadeonTM Vega \times GPU with up to 11 Compute Untis, which offer an advanced 2D and 3D graphic engine, able to manage up to 4 independent displays using the native Digital Display Interfaces (DDIs), the eDP interface and/or the PCI-e Graphics (PEG) x8 interface. On all DDIs, it is possible to support DP++ 1.3, DVI, HDMI 1.4 / 2.0 interfaces. As factory options, it is possible to have also one LVDS interface by using a dedicated bridge placed on native eDP inetrface.

Further graphical possibilities are given by the SoC's PCI Express graphics (PEG) x8 interface. Such an interface can be used as a single PCI-e x8 port or two PCI-e x 4 independent ports.

All the SoCs available on this module offer five PCI-express x 1 Gen 3 ports; four of them are carried out externally, the other port can be used to manage directly a Gigabit Ethernet controller, or carried to an optional PCI-Express switch, which would switch the upstream port to the Ethernet controller and to two further Com Express connector's PCI-e Gen2 ports.

The module functionalities are completed by the Audio HD Interface, 2 x Serial ATA Gen3 channels, 8 USB 2.0 ports, 4 USB 3.0 ports, 2 UARTs, 4 GPIs and 4 GPOs, Real Time Clock, LPC and SM Bus.

Please refer to following chapter for a complete list of all peripherals integrated and characteristics.

The product is COM Express® Rel.3.0 standard compliant, an open industry standard defined specifically for COMs (computer on modules). Its definition provides the ability to make a smooth transition from legacy parallel interfaces to the newest technologies based on serial buses available.

Specifically, COMe-B75-CT6 is a COM Express® module, Compact Form factor, Type 6 (95mm x 95mm).

COM Express® module integrates all the core components and has to be mounted onto an application-specific carrier board; carrier board designers can utilise as little or as many of the I/O interfaces as deemed necessary. The carrier board can therefore provide all the interface connectors required to attach the system to the application specific peripherals. This versatility allows the designer to create a dense and optimised package, which results in a more reliable product while simplifying system integration. Most important, COM Express® modules are scalable, which means once an application has been created there is the ability to diversify the product range through the use of different performance class or form factor size modules. Simply unplug one module and replace it with another, no redesign is necessary.

The robust thermal and mechanical concept, combined with extended power-management capabilities, is perfectly suited for all applications.

2.2 Technical Specifications

Processor

AMD Ryzen[™] Embedded V1807B with AMD Radeon[™] Vega 11 Graphics, Quad Core Dual Thread @ 3.35GHz (3.8 Boost), TDP 35-54W

AMD Ryzen[™] Embedded V1756B with AMD Radeon[™] Vega 5 Graphics, Quad

Core Dual Thread @ 3.25GHz (3.6 Boost), TDP 35-54W

AMD Ryzen[™] Embedded V1605B with AMD Radeon[™] Vega 5 Graphics, Quad

Core Dual Thread @ 2.0GHz (3.6 Boost), TDP 12-25W

AMD Ryzen[™] Embedded **V1208B** with AMD Radeon[™] Vega 3 Graphics, Dual

Core Dual Thread @ 2.3GHz (3.2 Boost), TDP 12-25W

AMD Ryzen[™] Embedded **V1404I** with AMD Radeon[™] Vega 3 Graphics, Quad Core / Single Thread, TDP 15W ,Industrial Temperature range

Memory

Two SO-DIMM slots supporting DDR4-3200 Single Rank / DDR4-2667 Dual Rank modules (DDR4-2400 with V1605B, V1202B and V1404l). ECC and non-ECC modules supported.

Graphics

AMD Radeon™ Vega GPU with up to 11 Compute Units 4 independent displays supported DirectX® 12, EGL 1.4, OpenCL™ 2.1, OpenGL® ES 1.1/ 2.x / 3.x (Halti), OpenGL® Next (Vulkan®), OpenGL® 4.6 supported H.265 (10-bit) decode and 8-bit video encode VP9 decode

Video Interfaces

3 x Digital Display interfaces, supporting DP 1.3, DVI and HDMI 1.4 / 2.0 eDP or Single / Dual-Channel 18- / 24- bit LVDS interface

Video Resolutions

Digital Display interfaces: up to 4K

LVDS: up to 1920 x 1200

Mass Storage

2 x S-ATA Gen3 channels

USB

8 x USB 2.0 Host Ports 4 x USB 3.0 Host ports

Networking

Gigabit Ethernet interface Intel® 1210 or 1211 GbE controller

Audio

HD Audio interface

PCI Express

Up to 4 x PCI-e x1 Gen3 lanes + 2 x PCI-e x1 Gen2 ports PCI-express Graphics (PEG) x 8 Gen3

Serial Ports

2 x UARTs

Other Interfaces

I2C bus

LPC Bus

SM Bus

4 x GPl, 4 x GPO

Thermal / FAN management

SPI Interface

Watch Dog timer

Real Time Clock

Power Management Signals

Power supply voltage: $+12V_{DC} \pm 10\%$ and $+5V_{SB}$ (optional)

Operating temperature: $0^{\circ}C \div +60^{\circ}C$ (commercial temperature range)**

-40°C÷+85°C (industrial temperature range)**

Dimensions: 95 x 95 mm (3.74" x 3.74")

** Temperatures indicated (minimum and maximum) are those measured at any point of SECO standard heatspreader for this product, during any and all times (including start-up). Actual temperature will widely depend on application, enclosure and/or environment. Upon customer to consider application-specific cooling solutions for the final system to keep the heatspreader temperature in the range indicated. Please also check paragraph 5.1

2.3 Electrical Specifications

According to COM Express® specifications, the COMe-B75-CT6 board needs to be supplied only with an external +12V_{DC} power supply.

5 Volts standby voltage needs to be supplied for working in ATX mode.

For Real Time Clock working and CMOS memory data retention, it is also needed a backup battery voltage. All these voltages are supplied directly through COM Express Connectors CN6 and CN7.

All remaining voltages needed for board's working are generated internally from +12V_{DC} power rail.

2.3.1 Power Rails meanings

In all the tables contained in this manual, Power rails are named with the following meaning:

_RUN: RUN voltages, i.e. power rails that are active only when the board is in ACPI's S0 (Working) state. Examples: +3.3V_RUN, +5V_RUN.

_ALW: Always-on voltages, i.e. power rails that are active both in ACPI's S0 (Working), S3 (Standby) and S5 (Soft Off) state. Examples: +5V_ALW, +3.3V_ALW.

_SUS: unswitched ACPI S3 voltages, i.e. power rails that are active both in ACPI's S0 (Working) and S3 (Standby) state. Examples: +1.5V_SUS

2.3.2 Power Consumption

COMe-B75-CT6 module, like all COM ExpressTM modules, needs a carrier board for its normal working. All connections with the external world come through this carrier board, which provide also the required voltage to the board, deriving it from its power supply source.

Therefore, power consumptions of the board are measured using a CCOMe-965 Carrier board on +12V_RUN power rail that supplies the board. For this reason, the values indicated in the table below are real power consumptions of the board, and are independent from those of the peripherals connected to the Carrier Board.

Power consumption in Suspend and Soft-Off States have been measured on +5V_ALW power rail. RTC power consumption has been measured on carrier board's backup battery when the system is not powered (VCC_RTC power rail).

The current consumptions, written in the table of this page, have been measured using the following setup:

- O.S. Windows 10
- 16GB DDR4 (2 x 8GB SO-DIMM DDR4 2400MHz modules, p/n G.SKILL F4-3200C16D-16GRS)
- 256GB SATA Gen3 SSD (p/n SSD370S) connected
- USB mouse and keyboard connected
- HDMI display connected.

Power consumptions common to all SOCs:

Suspend to RAM (Typical): 110mA Soft-Off (Typical) 67mA

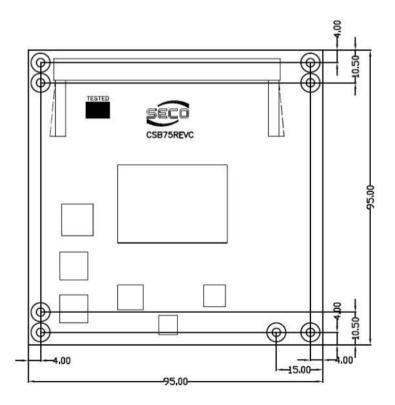
	SoC V1202B							
Status	TDP 12W		TDP 15W		TDP 25W			
	Average	Peak	Average	Peak	Average	Peak		
Idle, power saving configuration	0,567A	0,863A	0,534A	0,904A	0,558A	1,068A		
OS Boot, power saving configuration	1,606A	2,927A	1,585A	3,045A	1,574A	2,977A		
Video reproduction@ 4K, power saving configuration	0,984A	1,500A	1,050A	1,645A	1,048A	1,605A		
Internal Stress Test Tool, maximum performance	2,568A	3,241A	2,723A	3,705A	3,392A	3,770A		

	SoC V1605B							
Status	TDP 12W		TDP 15W		TDP 25W			
	Average	Peak	Average	Peak	Average	Peak		
Idle, power saving configuration	0,524A	0,635A	0,528A	0,866A	0,552A	0,882A		
OS Boot, power saving configuration	1,672A	3,052A	1,742A	3,010A	1,755A	3,293A		
Video reproduction@ 4K, power saving configuration	0,852A	1,295A	0,819A	1,326A	0,865A	1,393A		
Internal Stress Test Tool, maximum performance	2,837A	3,330A	3,083A	4,010A	3,363A	4,274A		

	SoC V1756B							
Status	TDP 35W		TDP 45W		TDP 54W			
	Average	Peak	Average	Peak	Average	Peak		
Idle, power saving configuration	ТВМ	TBM	TBM	TBM	TBM	TBM		
OS Boot, power saving configuration	ТВМ	TBM	TBM	TBM	TBM	ТВМ		
Video reproduction@ 4K, power saving configuration	TBM	TBM	TBM	TBM	TBM	TBM		
Internal Stress Test Tool, maximum performance	TBM	TBM	TBM	TBM	TBM	ТВМ		

	SoC V1807B							
Status	TDP 35W		TDP 45W		TDP 54W			
	Average	Peak	Average	Peak	Average	Peak		
Idle, power saving configuration	0,561A	1,076A	0,546A	1,102A	0,550A	1,128A		
OS Boot, power saving configuration	1,734A	4,295A	1,772A	5,210A	2,014A	5,177A		
Video reproduction@ 4K, power saving configuration	1,035A	1,480A	1,076A	1,553A	1,079A	1,627A		
Internal Stress Test Tool, maximum performance	4,528A	6,333A	4,739A	6,861A	5,096A	6,858A		

2.4 Mechanical Specifications


The COMe-B75-CT6 is a COM Express board, Compact form Factor type; therefore its dimensions are 95 mm x 95 mm (3.74" x 3.74").

Printed circuit of the board is made of twelve layers, some of them are ground planes, for disturbance rejection.

According to COM Express specifications, the carrier board plug can be of two different heights, 5mm and 8mm.

Whichever connector's height is chosen, in designing a custom carrier board please remember that the SO-DIMM connector placed on the bottom side of COMe-B75-CT6 will have a maximum height of 4mm.

This value must be kept in high consideration when choosing the carrier board plugs' height, if it is necessary to place components on the carrier board in the zone under the COM Express® module.

2.5 Block Diagram

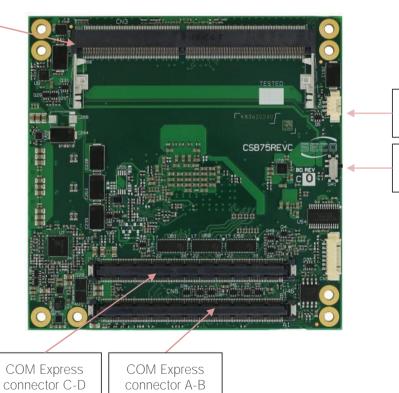
2 x FACTORY ALTERNATIVES DDI Port #3 eDP ReDriver NXP PTN3460 eDP-to-LVDS DDI Port #2 LVDS ReDriver bridge DDI Port #1 ReDriver PCI-e ports #[0 ..3] PEG x8 Gen3 PCI-e ports [4..5] PCI-e Packet Switch **FACTORY OPTION** DDI #2 DDI #3 DDI #0 DDI #1 Intel® Ethernet Gigabit Ethernet Controller I21x PCI-e #4 COM Express connector C-D COM Express connector A-B SPI Flash DDR4 ECC SODIMM Slot SPI AMD Ryzen™ HD Audio 2 x UART **Embedded** SATA ports #0 ÷ #1 V1000 SoC ACPI Signals DDR4 ECC SM Bus SODIMM Slot LPC Bus FAN TPM TIVA® embedded 12C USB 2.0 P.1 P.2 + 2.0 P. **USB SS P.1 P.2** microcontroller Watchdog USB 2.0 P.5 Voltage monitor Temperature monitor GPIO USB 3.0 ports #0 ÷ #1 USB 2.0 ports #4 ÷ #7 USB 2.0 Hub USB 2.0 ports #0 ÷ #1 USB 3.0 ports #2 ÷ #3 USB 3.0 Hub USB 2.0 ports #2 ÷ #3 +12V_RUN +12V_RUN, +5V_ALW Power section

Chapter 3. CONNECTORS

- Introduction
- Connectors description

3.1 Introduction

According to COM Express® specifications, all interfaces to the board are available through two 220 pin connectors, for a total of 440 pin. Simplifying the terminology in this documentation, the primary connector is called A-B and the secondary C-D, since each one consists of two rows.


In addition, a Fan connector has been placed on one side of the board, in order to allow an easier connection of active heatsinks to the module.

TOP SIDE

BOTTOM SIDE

SO-DIMM Slots

COMe-B75-CT6

Ext. FAN Connector

BIOS Restore switch

3.2 Connectors description

3.2.1 **FAN Connector**

FAN Connector – CN4							
Pin	Signal						
1	GND						
2	FAN_POWER						
3	FAN_TACHO_IN						

Depending on the usage model of COMe-B75-CT6 module, for critical applications/environments on the module itself it is available a 3-pin dedicated connector for an external +12Vpc FAN.

FAN Connector is a 3-pin single line SMT connector, type MOLEX 53261-0371 or equivalent, with pinout shown in the table on the left.

Mating connector: MOLEX 51021-0300 receptacle with MOLEX 50079-8000 female crimp terminals.

Please be aware that the use of an external fan depends strongly on customer's application/installation.

Please refer to chapter 5.1 for considerations about thermal dissipation.

FAN POWER: +12V RUN derived power rail for FAN, managed by the embedded microcontroller via PWM signal.

FAN TACHO IN: tachometric input from the fan to the embedded microcontroller, +3.3V RUN electrical level signal with $10k\Omega$ pull-up resistor.

SO-DIMM DDR4 Slots 3.2.2

CPUs used on the COMe-B75-CT6 board provide support to DDR4 SO-DIMM memory modules. Both ECC and non-ECC modules are supported.

V1807B and V1756B can support up to DDR-3200 Single Rank modules or DDR4-2667 Dual Rank SO-DIMM modules, while V1605B and V1202B can support up to DDR4-2400 DO-DIMM modules.

For use of this memories, on board there are two SO-DIMM DDR4 slots.

The socket placed on top side (CN2) is type LOTES p/n ADDR0208-P003A or equivalent, a right angle, low profile, reverse type socket, used for high speed system memory applications.

The socket placed on bottom side (CN3) is type LOTES p/n ADDR0205-P003A or equivalent, and is a socket with performances similar to the other, only it is standard type, not reverse. The two sockets together allow the insertion of up to 2 SO-DIMM modules, for support to dual channel memories.

BIOS Restore switch 3.2.3

In some cases, a wrong configuration of BIOS parameters could lead the module in an unusable state (i.e. no video output, all USB HID devices disabled).

For these cases, on the module it has been placed a 3-way switch which can be used to restore the BIOS to factory default configuration. To do so, it is necessary to place the contact of the switch in 1-2 position, then turn on the module, wait until the board resets itself then turn off the module. The contact MUST be now placed back to 2-3 position.

During normal use, the contact MUST be always placed in 2-3 position.

3.2.4 COM Express® Module connectors

For the connection of COM Express® CPU modules, on board there is one double connector, type TYCO 3-1827231-6 (440 pin, ultra thin, 0.5mm pitch, h=4mm), as requested by COM Express® specifications.

The pinout of the module is compliant to COM Express® Type 6 specifications. Not all the signals contemplated in COM Express® standard are implemented on the double connector, due to the functionalities really implemented on COMe-B75-CT6 board. Therefore, please refer to the following table for a list of effective signals reported on the connector. For accurate signals description, please consult the following paragraphs.

			COM Express®	Connec ⁻	tor AB - CN6		
		ROW A				ROW B	
SIGNAL GROUP	Туре	Pin name	Pin nr.	Pin nr.	Pin name	Туре	SIGNAL GROUP
	PWR	GND	A1	B1	GND	PWR	
GBE	I/O	GBE0_MDI3-	A2	B2	GBE0_ACT#	0	GBE
GBE	I/O	GBE0_MDI3+	А3	В3	LPC_FRAME#	0	LPC
GBE	0	GBE0_LINK100#	A4	B4	LPC_AD0	1/0	LPC
GBE	0	GBE0_LINK1000#	A5	B5	LPC_AD1	I/O	LPC
GBE	I/O	GBE0_MDI2-	A6	В6	LPC_AD2	I/O	LPC
GBE	I/O	GBE0_MDI2+	A7	В7	LPC_AD3	I/O	LPC
GBE	0	GBE0_LINK#	A8	В8	LPC_DRQ0#	T.	LPC
GBE	I/O	GBE0_MDI1-	A9	В9	N.C.	N.A.	
GBE	I/O	GBE0_MDI1+	A10	B10	LPC_CLK	0	LPC
	PWR	GND	A11	B11	GND	PWR	
GBE	I/O	GBE0_MDI0-	A12	B12	PWRBTN#	I	PWR_MGMT
GBE	I/O	GBE0_MDI0+	A13	B13	SMB_CK	I/O	SMBUS
	N.A.	N.C.	A14	B14	SMB_DAT	I/O	SMBUS
PWR_MGMT	0	SUS_S3#	A15	B15	SMB_ALERT#	I	SMBUS
SATA	0	SATAO_TX+	A16	B16	SATA1_TX+	0	SATA
SATA	Ο	SATAO_TX-	A17	B17	SATA1_TX-	0	SATA
PWR_MGMT	0	SUS_S4#	A18	B18	SUS_STAT#	0	PWR_MGMT
SATA	I	SATAO_RX+	A19	B19	SATA1_RX+	I	SATA
SATA	1	SATAO_RX-	A20	B20	SATA1_RX-	I	SATA

	PWR	GND	A21	B21	GND	PWR	
	N.A.	N.C.	A22	B22	N.C.	N.A.	
	N.A.	N.C.	A23	B23	N.C.	N.A.	
PWR_MGMT	0	SUS_S5#	A24	B24	PWR_OK	1	PWR_MGMT
	N.A.	N.C.	A25	B25	N.C.	N.A.	
	N.A.	N.C.	A26	B26	N.C.	N.A.	
PWR_MGMT	1	BATLOW#	A27	B27	WDT	0	MISC
SATA	0	SATA_ACT#	A28	B28	N.C.	N.A.	
AUDIO	0	HDA_SYNC	A29	B29	HDA_SDIN1	1/0	AUDIO
AUDIO	0	HDA_RST#	A30	B30	HDA_SDINO	1/0	AUDIO
	PWR	GND	A31	B31	GND	PWR	
AUDIO	I/O	HDA_BITCLK	A32	B32	SPKR	0	MISC
AUDIO	0	HDA_SDOUT	A33	B33	I2C_CK	1/0	I2C
SPI	1	BIOS_DISO#	A34	B34	I2C_DAT	I/O	I2C
MISC	0	THRMTRIP#	A35	B35	THRM#	1	MISC
USB	I/O	USB6-	A36	B36	USB7-	I/O	USB
USB	I/O	USB6+	A37	B37	USB7+	1/0	USB
USB	1	USB_6_7_OC#	A38	B38	USB_4_5_OC#	1	USB
USB	I/O	USB4-	A39	B39	USB5-	I/O	USB
USB	I/O	USB4+	A40	B40	USB5+	1/0	USB
	PWR	GND	A41	B41	GND	PWR	
USB	I/O	USB2-	A42	B42	USB3-	I/O	USB
USB	I/O	USB2+	A43	B43	USB3+	I/O	USB
USB	1	USB_2_3_OC#	A44	B44	USB_0_1_OC#	1	USB
USB	I/O	USB0-	A45	B45	USB1-	I/O	USB
USB	I/O	USB0+	A46	B46	USB1+	I/O	USB
	PWR	VCC_RTC	A47	B47	N.C.	N.A.	
	N.A.	N.C.	A48	B48	N.C.	N.A.	
GBE	0	GBE_SPD	A49	B49	SYS_RESET#	1	PWR_MGMT
LPC	I/O	LPC_SERIRQ	A50	B50	CB_RESET#	0	PWR_MGMT

	PWR	GND	A51	B51	GND	PWR	
PCIE	Ο	PCIE_TX5+	A52	B52	PCIE_RX5+	I	PCIE
PCIE	Ο	PCIE_TX5-	A53	B53	PCIE_RX5-	I	PCIE
GPIO	1	GPI0	A54	B54	GPO1	0	GPIO
PCIE	0	PCIE_TX4+	A55	B55	PCIE_RX4+	1	PCIE
PCIE	0	PCIE_TX4-	A56	B56	PCIE_RX4-	1	PCIE
	PWR	GND	A57	B57	GPO2	Ο	GPIO
PCIE	0	PCIE_TX3+	A58	B58	PCIE_RX3+	1	PCIE
PCIE	0	PCIE_TX3-	A59	B59	PCIE_RX3-	1	PCIE
	PWR	GND	A60	B60	GND	PWR	
PCIE	0	PCIE_TX2+	A61	B61	PCIE_RX2+	1	PCIE
PCIE	0	PCIE_TX2-	A62	B62	PCIE_RX2-	1	PCIE
GPIO	1	GPI1	A63	B63	GPO3	Ο	GPIO
PCIE	0	PCIE_TX1+	A64	B64	PCIE_RX1+	1	PCIE
PCIE	0	PCIE_TX1-	A65	B65	PCIE_RX1-	1	PCIE
	PWR	GND	A66	B66	WAKEO#	1	PWR_MGMT
GPIO	1	GPI2	A67	B67	WAKE1#	1	PWR_MGMT
PCIE	0	PCIE_TX0+	A68	B68	PCIE_RX0+	1	PCIE
PCIE	0	PCIE_TX0-	A69	B69	PCIE_RX0-	1	PCIE
	PWR	GND	A70	B70	GND	PWR	
eDP/LVDS	0	eDP_TX2+ / LVDS_A0+	A71	B71	LVDS_B0+	Ο	LVDS
eDP/LVDS	0	eDP_TX2- / LVDS_A0-	A72	B72	LVDS_B0-	Ο	LVDS
eDP/LVDS	0	eDP_TX1+ / LVDS_A1+	A73	B73	LVDS_B1+	Ο	LVDS
eDP/LVDS	0	eDP_TX1- / LVDS_A1-	A74	B74	LVDS_B1-	Ο	LVDS
eDP/LVDS	0	eDP_TX0+ / LVDS_A2+	A75	B75	LVDS_B2+	Ο	LVDS
eDP/LVDS	0	eDP_TX0- / LVDS_A2-	A76	B76	LVDS_B2-	0	LVDS
eDP/LVDS	0	eDP_VDD_EN / LVDS_VDD_EN	A77	B77	LVDS_B3+	Ο	LVDS
LVDS	0	LVDS_A3+	A78	B78	LVDS_B3-	0	LVDS
LVDS	0	LVDS_A3-	A79	B79	eDP_BKLT_EN / LVDS_BKLT_EN	Ο	eDP/LVDS
	PWR	GND	A80	B80	GND	PWR	

eDP/LVDS	0	eDP_TX3+ / LVDS_A_CK+	A81	B81	LVDS_B_CK+	0	LVDS
eDP/LVDS	0	eDP_TX3- / LVDS_A_CK-	A82	B82	LVDS_B_CK-	0	LVDS
eDP/LVDS	I/O	eDP_AUX+ / LVDS_I2C_CK	A83	B83	eDP_BKLT_CTRL/LVDS_BKLT_CTRL	0	eDP/LVDS
eDP/LVDS	I/O	eDP_AUX- / LVDS_I2C_DAT	A84	B84	VCC_5V_SBY	PWR	
GPIO	1	GPI3	A85	B85	VCC_5V_SBY	PWR	
	N.A.	RSVD	A86	B86	VCC_5V_SBY	PWR	
eDP	I	eDP_HPD	A87	B87	VCC_5V_SBY	PWR	
PCIE	0	PCIE_CK_REF+	A88	B88	BIOS_DIS1#	I	SPI
PCIE	0	PCIE_CK_REF-	A89	B89	N.C.	N.A.	
	PWR	GND	A90	B90	GND	PWR	
SPI	0	SPI_POWER	A91	B91	N.C.	N.A.	
SPI	1	SPI_MISO	A92	B92	N.C.	N.A.	
GPIO	0	GPO0	A93	B93	N.C.	N.A.	
SPI	0	SPI_CLK	A94	B94	N.C.	N.A.	
SPI	0	SPI_MOSI	A95	B95	N.C.	N.A.	
MISC	1	TPM_PP	A96	B96	N.C.	N.A.	
TYPE	N.A.	Type10#: N.C.	A97	B97	SPI_CS#	0	SPI
SERIAL	0	SER0_TX	B75	B98	RSVD	N.A.	
SERIAL	1	SER0_RX	A99	B99	RSVD	N.A.	
	PWR	GND	A100	B100	GND	PWR	
SERIAL	0	SER1_TX	A101	B101	FAN_PWMOUT	0	MISC
SERIAL	1	SER1_RX	A102	B102	FAN_TACHIN	1	MISC
PWR_MGMT	1	LID#	A103	B103	SLEEP#	1	PWR_MGMT
	PWR	VCC_12V	A104	B104	VCC_12V	PWR	
	PWR	VCC_12V	A105	B105	VCC_12V	PWR	
	PWR	VCC_12V	A106	B106	VCC_12V	PWR	
	PWR	VCC_12V	A107	B107	VCC_12V	PWR	
	PWR	VCC_12V	A108	B108	VCC_12V	PWR	
	PWR	VCC_12V	A109	B109	VCC_12V	PWR	
	PWR	GND	A110	B110	GND	PWR	

		СОМ	Express® C	Connect	or CD – CN6		
		ROW C				ROW D	
SIGNAL GROUP	Type	Pin name	Pin nr.	Pin nr.	Pin name	Type	SIGNAL GROUP
	PWR	GND	C1	D1	GND	PWR	
	PWR	GND	C2	D2	GND	PWR	
USB	1	USB_SSRX0-	C3	D3	USB_SSTX0-	0	USB
USB	1	USB_SSRX0+	C4	D4	USB_SSTX0+	0	USB
	PWR	GND	C5	D5	GND	PWR	
USB	1	USB_SSRX1-	C6	D6	USB_SSTX1-	0	USB
USB	1	USB_SSRX1+	C7	D7	USB_SSTX1+	0	USB
	PWR	GND	C8	D8	GND	PWR	
USB	I	USB_SSRX2-	C9	D9	USB_SSTX2-	0	USB
USB	1	USB_SSRX2+	C10	D10	USB_SSTX2+	0	USB
	PWR	GND	C11	D11	GND	PWR	
USB	1	USB_SSRX3-	C12	D12	USB_SSTX3-	0	USB
USB	I	USB_SSRX3+	C13	D13	USB_SSTX3+	Ο	USB
	PWR	GND	C14	D14	GND	PWR	
	N.A.	N.C.	C15	D15	DDI1_CTRLCLK_AUX+	I/O	DDI
	N.A.	N.C.	C16	D16	DDI1_CTRLDATA_AUX-	I/O	DDI
	N.A.	RSVD	C17	D17	RSVD	N.A.	
	N.A.	RSVD	C18	D18	RSVD	N.A.	
	N.A.	N.C.	C19	D19	N.C.	N.A.	
	N.A.	N.C.	C20	D20	N.C.	N.A.	
	PWR	GND	C21	D21	GND	PWR	
	N.A.	N.C.	C22	D22	N.C.	N.A.	
	N.A.	N.C.	C23	D23	N.C.	N.A.	
DDI	I	DDI1_HPD	C24	D24	RSVD	N.A.	
	N.A.	N.C.	C25	D25	RSVD	N.A.	
	N.A.	N.C.	C26	D26	DDI1_PAIR0+	0	DDI

	N.A.	RSVD	C27	D27	DDI1_PAIR0-	0	DDI
	N.A.	RSVD	C28	D28	RSVD	N.A.	
	N.A.	N.C.	C29	D29	DDI1_PAIR1+	0	DDI
	N.A.	N.C.	C30	D30	DDI1_PAIR1-	0	DDI
	PWR	GND	C31	D31	GND	PWR	
DDI	I/O	DDI2_CTRLCLK_AUX+	C32	D32	DDI1_PAIR2+	0	DDI
DDI	I/O	DDI2_CTRLDATA_AUX-	C33	D33	DDI1_PAIR2-	0	DDI
DDI	1	DDI2_DDC_AUX_SEL	C34	D34	DDI1_DDC_AUX_SEL	1	DDI
	N.A.	RSVD	C35	D35	RSVD	N.A.	
DDI	I/O	DDI3_CTRLCLK_AUX+	C36	D36	DDI1_PAIR3+	0	DDI
DDI	I/O	DDI3_CTRLDATA_AUX-	C37	D37	DDI1_PAIR3-	0	DDI
DDI	1	DDI3_DDC_AUX_SEL	C38	D38	RSVD	N.A.	
DDI	Ο	DDI3_PAIR0+	C39	D39	DDI2_PAIR0+	0	DDI
DDI	0	DDI3_PAIRO-	C40	D40	DDI2_PAIR0-	0	DDI
	PWR	GND	C41	D41	GND	PWR	
DDI	Ο	DDI3_PAIR1+	C42	D42	DDI2_PAIR1+	0	DDI
DDI	Ο	DDI3_PAIR1-	C43	D43	DDI2_PAIR1-	0	DDI
DDI	1	DDI3_HPD	C44	D44	DDI2_HPD	1	DDI
	N.A.	RSVD	C45	D45	RSVD	N.A.	
DDI	Ο	DDI3_PAIR2+	C46	D46	DDI2_PAIR2+	0	DDI
DDI	Ο	DDI3_PAIR2-	C47	D47	DDI2_PAIR2-	0	DDI
	N.A.	RSVD	C48	D48	RSVD	N.A.	
DDI	Ο	DDI3_PAIR3+	C49	D49	DDI2_PAIR3+	0	DDI
DDI	Ο	DDI3_PAIR3-	C50	D50	DDI2_PAIR3-	0	DDI
	PWR	GND	C51	D51	GND	PWR	
PEG	I	PEG_RX0+	C52	D52	PEG_TX0+	0	PEG
PEG	I	PEG_RX0-	C53	D53	PEG_TX0-	0	PEG
TYPE	N.A.	TYPEO#: N.C.	C54	D54	N.C.	N.A.	
PEG	I	PEG_RX1+	C55	D55	PEG_TX1+	0	PEG
PEG	I	PEG_RX1-	C56	D56	PEG_TX1-	0	PEG

TYPE	N.A.	TYPE1#: N.C.	C57	D57	TYPE2#: GND	N.A.	TYPE
PEG	I	PEG_RX2+	C58	D58	PEG_TX2+	0	PEG
PEG	1	PEG_RX2-	C59	D59	PEG_TX2-	0	PEG
	PWR	GND	C60	D60	GND	PWR	
PEG	1	PEG_RX3+	C61	D61	PEG_TX3+	0	PEG
PEG	1	PEG_RX3-	C62	D62	PEG_TX3-	0	PEG
	N.A.	RSVD	C63	D63	RSVD	N.A.	
	N.A.	RSVD	C64	D64	RSVD	N.A.	
PEG	1	PEG_RX4+	C65	D65	PEG_TX4+	0	PEG
PEG	1	PEG_RX4-	C66	D66	PEG_TX4-	0	PEG
	N.A.	RSVD	C67	D67	GND	PWR	
PEG	1	PEG_RX5+	C68	D68	PEG_TX5+	0	PEG
PEG	1	PEG_RX5-	C69	D69	PEG_TX5-	0	PEG
	PWR	GND	C70	D70	GND	PWR	
PEG	1	PEG_RX6+	C71	D71	PEG_TX6+	0	PEG
PEG	1	PEG_RX6-	C72	D72	PEG_TX6-	0	PEG
	PWR	GND	C73	D73	GND	PWR	
PEG	1	PEG_RX7+	C74	D74	PEG_TX7+	0	PEG
PEG	1	PEG_RX7-	C75	D75	PEG_TX7-	0	PEG
	PWR	GND	C76	D76	GND	PWR	
	N.A.	RSVD	C77	D77	RSVD	N.A.	
	N.A.	N.C.	C78	D78	N.C.	N.A.	
	N.A.	N.C.	C79	D79	N.C.	N.A.	
	PWR	GND	C80	D80	GND	PWR	
	N.A.	N.C.	C81	D81	N.C.	N.A.	
	N.A.	N.C.	C82	D82	N.C.	N.A.	
	N.A.	RSVD	C83	D83	RSVD	N.A.	
	PWR	GND	C84	D84	GND	PWR	
	N.A.	N.C.	C85	D85	N.C.	N.A.	
	N.A.	N.C.	C86	D86	N.C.	N.A.	

PWR	GND	C87	D87	GND	PWR
N.A.	N.C.	C88	D88	N.C.	N.A.
N.A.	N.C.	C89	D89	N.C.	N.A.
PWR	GND	C90	D90	GND	PWR
N.A.	N.C.	C91	D91	N.C.	N.A.
N.A.	N.C.	C92	D92	N.C.	N.A.
PWR	GND	C93	D93	GND	PWR
N.A.	N.C.	C94	D94	N.C.	N.A.
N.A.	N.C.	C95	D95	N.C.	N.A.
PWR	GND	C96	D96	GND	PWR
N.A.	RSVD	C97	D97	RSVD	N.A.
N.A.	N.C.	C98	D98	N.C.	N.A.
N.A.	N.C.	C99	D99	N.C.	N.A.
PWR	GND	C100	D100	GND	PWR
N.A.	N.C.	C101	D101	N.C.	N.A.
N.A.	N.C.	C102	D102	N.C.	N.A.
PWR	GND	C103	D103	GND	PWR
PWR	VCC_12V	C104	D104	VCC_12V	PWR
PWR	VCC_12V	C105	D105	VCC_12V	PWR
PWR	VCC_12V	C106	D106	VCC_12V	PWR
PWR	VCC_12V	C107	D107	VCC_12V	PWR
PWR	VCC_12V	C108	D108	VCC_12V	PWR
PWR	VCC_12V	C109	D109	VCC_12V	PWR
PWR	GND	C110	D110	GND	PWR
1 4417	OND	0110	DITO	OND	IVVIX

3.2.4.1 Audio interface signals

The COMe-B75-CT6 module supports HD audio format, thanks to native support offered by the processor to this audio codec standard. Up to 2 HD audio codecs on the carrier board can be supported.

Here following the signals related to HD Audio interface:

HDA_SYNC: HD Audio Serial Bus Synchronization. 48kHz fixed rate output from the module to the Carrier board, electrical level +3.3V_RUN.

HDA_RST#: HD Audio Codec Reset. Active low signal, output from the module to the Carrier board, electrical level +3.3V_RUN.

HDA_BITCLK: HD Audio Serial Bit Clock signal. 24MHz serial data clock generated by the AMD HD audio controller, output from the module to the Carrier board, electrical level +3.3V_RUN.

HDA_SDOUT: HD Audio Serial Data Out signal. Output from the module to the Carrier board, electrical level +3.3V_RUN.

HDA_SDIN[0..1]: HD Audio Serial Data In signal. Inputs to the module from the Codec(s) placed on the Carrier board, electrical level +3.3V_RUN.

The first four signals have to be connected to all the HD Audio codecs present on the carrier board. For each Codec, only one HDA_SDIN signal must be used. Please refer to the chosen Codecs' Reference Design Guide for correct implementation of audio section on the carrier board.

3.2.4.2 Gigabit Ethernet signals

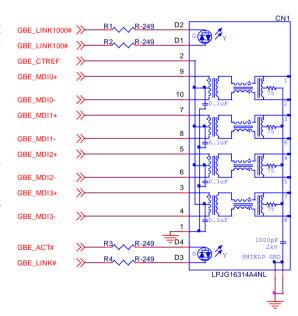
The Gigabit Ethernet interface is realised, on COMe-B75-CT6 module, using an Intel® I210/I211 Gigabit Ethernet controller, which is interfaced to the SoC through the General Purpose PCI-express port #4 or through the PCI-express Packet switch port #3, depending on the factory option purchased.

Here following the signals involved in Gigabit Ethernet management

GBEO_MDIO+/GBEO_MDIO-: Media Dependent Interface (MDI) I/O differential pair #0

GBEO_MDI1+/GBEO_MDI1-: Media Dependent Interface (MDI) I/O differential pair #1

GBE0_MDI2+/GBE0_MDI2-: Media Dependent Interface (MDI) I/O differential pair #2, only used for 1Gbps Ethernet mode (not for 10/100Mbps modes)


GBEO_MDI3+/GBEO_MDI3-: Media Dependent Interface (MDI) I/O differential pair #3, only used for 1Gbps Ethernet mode (not for 10/100Mbps modes)

GBEO_ACT#: Ethernet controller activity indicator, Active Low Output signal, electrical level +3.3V_LAN.

GBEO_LINK#: Ethernet controller link indicator, Active Low Output signal, electrical level +3.3V_LAN.

GBEO_LINK100#: Ethernet controller 100Mbps link indicator, Active Low Output signal, electrical level +3.3V_LAN.

GBEO_LINK1000#: Ethernet controller 1Gbps link indicator, Active Low Output signal, electrical level +3.3V_LAN.

GBE_SPD: Ethernet Controller Software Defined Pin. Directly connected to the Intel® I210/I211 SDP0 pin

 $+3.3V_{LAN}$ is derived from $+3.3V_{ALW}$ power rail through a 120Ω ferrite bead.

These signals can be connected, on the Carrier board, directly to an RJ-45 connector, in order to complete the Ethernet interface.

Please notice that if just a FastEthernet (i.e. 10/100 Mbps) is needed, then only MDIO and MDI1 differential lanes are necessary.

Unused differential pairs and signals can be left unconnected. Please look to the schematic provided in the previous page as an example of implementation of Gigabit Ethernet connector. In this example, it is also present GBE_CTREF signal connected on pin #2 of the RJ-45 connector.

Intel® I210/I211 Gigabit Ethernet controllers, however, doesn't need the analog powered centre tap, therefore the signal GBE_CTREF is not available on COM Express® connector AB.

All schematics (henceforth also referred to as material) contained in this manual are provided by SECO S.p.A. for the sole purpose of supporting the customers' internal development activities.

The schematics are provided "AS IS". SECO makes no representation regarding the suitability of this material for any purpose or activity and disclaims all warranties and conditions with regard to said material, including but not limited to, all expressed or implied warranties and conditions of merchantability, suitability for a specific purpose, title and non-infringement of any third party intellectual property rights.

The customer acknowledges and agrees to the conditions set forth that these schematics are provided only as an example and that he will conduct an independent analysis and exercise judgment in the use of any and all material. SECO declines all and any liability for use of this or any other material in the customers' product design

3.2.4.3 S-ATA signals

The AMD Ryzen[™] Embedded V1000 processors offer two S-ATA Gen3 interfaces, which are all carried out on COM Express[®] connector AB.

All SATA ports support 1.5 Gbps, 3.0 Gbps and 6.0 Gbps data rates.

Here following the signals related to SATA interface:

SATAO_TX+/SATAO_TX-: Serial ATA Channel #0 Transmit differential pair.

SATAO_RX+/SATAO_RX-: Serial ATA Channel #0 Receive differential pair.

SATA1_TX+/SATA1_TX-: Serial ATA Channel #1 Transmit differential pair.

SATA1_RX+/SATA1_RX-: Serial ATA Channel #1 Receive differential pair.

SATA_ACT#: Serial ATA Activity Led. $+3.3V_RUN$ Active Low output signal with $10k\Omega$ pull-up resistor.

10nF AC series decoupling capacitors are placed on each line of SATA differential pairs.

On the carrier board, these signals can be carried out directly to the SATA connectors.

3.2.4.4 PCI Express interface signals

COMe-B75-CT6 can offer externally up to six PCI Express lanes, which are managed directly by the AMD Ryzen[™] Embedded V1000 processors.

These interfaces can be managed only as single PCI-e x1 lanes.

PCI express Gen3 (8 GT/s) is supported an PCI-e ports #0 ...#3, while PCI-e ports #4 and #5 (available only with the PCI-e switch mounted) are Gen 2.

Here following the signals involved in PCI express management.

PCIEO_TX+/PCIEO_TX-: PCI Express lane #0, Transmitting Output Differential pair. Connected to the AMD SoC's General Purpose PCI-e port #0.

PCIEO_RX+/PCIEO_RX-: PCI Express lane #0, Receiving Input Differential pair. Connected to the AMD SoC's General Purpose PCI-e port #0.

PCIE1_TX+/PCIE1_TX-: PCI Express lane #1, Transmitting Output Differential pair. Connected to the AMD SoC's General Purpose PCI-e port #1.

PCIE1_RX+/PCIE1_RX-: PCI Express lane #1, Receiving Input Differential pair. Connected to the AMD SoC's General Purpose PCI-e port #1.

PCIE2_TX+/PCIE2_TX-: PCI Express lane #2, Transmitting Output Differential pair. Connected to the AMD SoC's General Purpose PCI-e port #2.

PCIE2_RX+/PCIE2_RX-: PCI Express lane #2, Receiving Input Differential pair. Connected to the AMD SoC's General Purpose PCI-e port #2.

PCIE3_TX+/PCIE3_TX-: PCI Express lane #3, Transmitting Output Differential pair. Connected to the AMD SoC's General Purpose PCI-e port #3.

PCIE3_RX+/PCIE3_RX-: PCI Express lane #3, Receiving Input Differential pair. Connected to the AMD SoC's General Purpose PCI-e port #3.

PCIE4_TX+/PCIE4_TX-: PCI Express lane #4, Transmitting Output Differential pair. Connected to the PCI Express Packet switch port #1, if mounted.

PCIE4_RX+/PCIE4_RX-: PCI Express lane #4, Receiving Input Differential pair. Connected to the PCI Express Packet switch port #1, if mounted.

PCIE5 TX+/PCIE5 TX-: PCI Express lane #5, Transmitting Output Differential pair. Connected to the PCI Express Packet switch port #2, if mounted.

PCIE5_RX+/PCIE5_RX-: PCI Express lane #5, Receiving Input Differential pair. Connected to the PCI Express Packet switch port #2, if mounted.

PCIE_CLK_REF+/ PCIE_CLK_REF-: PCI Express 100MHz Reference Clock, Differential Pair. Please consider that only one reference clock is supplied, while there are seven different PCI express lanes and one PEG. When more than one PCI Express lane is used on the carrier board, then a zero-delay buffer should be used to replicate the reference clock to all the devices.

PCI Express ports from # 0 to #3 can be grouped to work as a single PCI-e x4 port, or two PCI-e x2 ports, or (one PCI-e x2 + 2x PCI-e x1) ports. This can be done via BIOS settings (please check par.4.3.9).

3.2.4.5 PEG interface signals

In addition to the six PCI express lanes, described in the previous paragraph, the COMe-B75-CT6 module offer a PCI-Express x8 graphics interface (PEG), which can be used for connection of external graphics cards. Such an interface is directly managed by the AMD Ryzen™ Embedded V1000 processors.

PCI express Gen3 is supported on PEG interface.

Here following the signals involved in PEG management.

PEG_TX[0..7]+/PEG_TX[0..7]-: PCI Express Graphics lane #0 ÷ #7, Transmitting Output Differential pairs.

PEG_RX[0..7]+/PEG_RX[0..7]-: PCI Express Graphics lane #0 ÷ #7, Receiving Output Differential pairs.

This PEG port can be configured to work as a single PCI-e x8 port or two PCI-e x4 ports (in that case, lanes #0÷#3 would be used for the first port, GFX#0, while lanes #4÷#7 would be used for the second port, GFX #1). This configuration can be done via BIOS settings (please check par.4.3.9).

3.2.4.6 USB interface signals

The AMD Ryzen[™] Embedded V1000 processors embed two USB controllers, which allow, on COMe-B75-CT6 module, implementing four Superspeed ports (i.e. USB 3.0 compliant) and eight USB 1.x / 2.0 Host ports.

All USB 2.0 ports are able to work in High Speed (HS), Full Speed (FS) and Low Speed (LS).

Here following the signals related to USB interfaces.

USB0+/USB0-: Universal Serial Bus Port #0 bidirectional differential pair, managed by the SoC's USB Controller #0 (Port #1).

USB1+/USB1-: Universal Serial Bus Port #1 bidirectional differential pair, managed by the SoC's USB Controller #0 (Port #2).

USB2+/USB2-: Universal Serial Bus Port #2 bidirectional differential pair, managed by the USB 3.0 Hub Downstream port #1

USB3+/USB3-: Universal Serial Bus Port #3 bidirectional differential pair, managed by the USB 3.0 Hub Downstream port #2.

USB4+/USB4-: Universal Serial Bus Port #4 bidirectional differential pair, managed by the USB 2.0 Hub Downstream port #4.

USB5+/USB5-: Universal Serial Bus Port #5 bidirectional differential pair, managed by the USB 2.0 Hub Downstream port #2.

USB6+/USB6-: Universal Serial Bus Port #6 bidirectional differential pair, managed by the USB 2.0 Hub Downstream port #3.

USB7+/USB7-: Universal Serial Bus Port #7 bidirectional differential pair, managed by the USB 2.0 Hub Downstream port #1.

USB_SSRX0+/USB_SSRX0-: USB Super Speed Port #0 receive differential pair; it is managed by the SoC's USB Controller #0 (Port #1).

USB_SSTX0+/USB_SSTX0-: USB Super Speed Port #0 transmit differential pair; it is managed by the SoC's USB Controller #0 (Port #1).

USB_SSRX1+/USB_SSRX1-: USB Super Speed Port #1 receive differential pair; it is managed by the SoC's USB Controller #0 (Port #2).

USB_SSTX1+/USB_SSTX1-: USB Super Speed Port #1 transmit differential pair; it is managed by the SoC's USB Controller #0 (Port #2).

USB_SSRX2+/USB_SSRX2-: USB Super Speed Port #2 receive differential pair; it is managed by the USB 3.0 Hub Downstream port #1.

USB_SSTX2+/USB_SSTX2-: USB Super Speed Port #2 transmit differential pair; it is managed by the USB 3.0 Hub Downstream port #1.

USB_SSRX3+/USB_SSRX3-: USB Super Speed Port #3 receive differential pair; it is managed by the USB 3.0 Hub Downstream port #2.

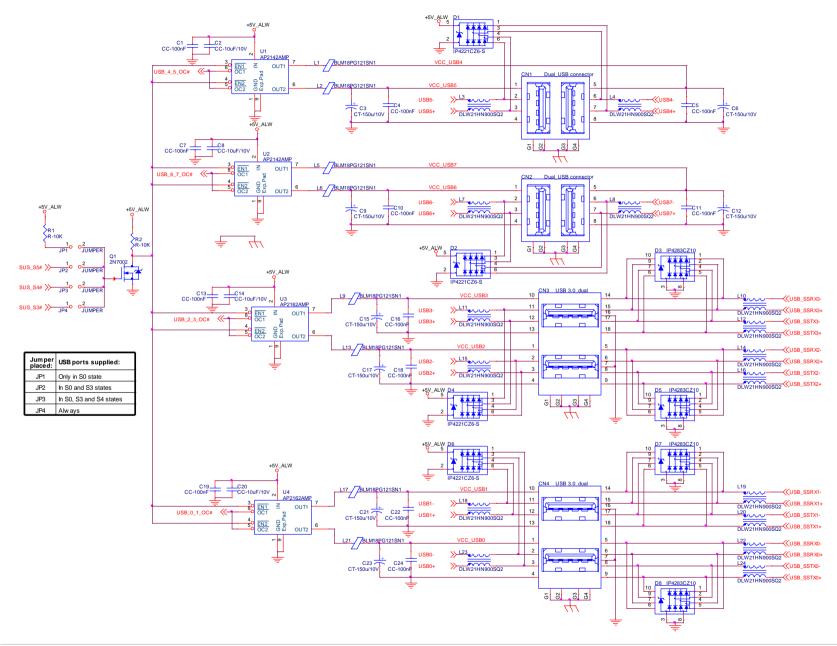
USB_SSTX3+/USB_SSTX3-: USB Super Speed Port #3 transmit differential pair; it is managed by the USB 3.0 Hub Downstream port #2.

USB_0_1_OC#: USB Over Current Detect Input. Active Low Input signal, electrical level $+3.3V_ALW$ with $10k\Omega$ pull-up resistor. This pin has to be used for overcurrent detection of USB Port#0 and #1 of COMe-B75-CT6 module

USB_2_3_OC#: USB Over Current Detect Input. Active Low Input signal, electrical level $+3.3V_ALW$ with $10k\Omega$ pull-up resistor. This pin has to be used for overcurrent detection of USB Ports #2 and #3 of COMe-B75-CT6 module.

USB_4_5_OC#: USB Over Current Detect Input. Active Low Input signal, electrical level $+3.3V_ALW$ with $10k\Omega$ pull-up resistor. This pin has to be used for overcurrent detection of USB Port #4 and/or #5 of COMe-B75-CT6 module.

USB_6_7_OC#: USB Over Current Detect Input. Active Low Input signal, electrical level $+3.3V_ALW$ with $10k\Omega$ pull-up resistor. This pin has to be used for overcurrent detection of USB Port #6 and/or #7 of COMe-B75-CT6 module.


100nF AC series decoupling capacitors are placed on each transmitting line of USB Super speed differential pairs.

Please notice that for correct management of Overcurrent signals, power distribution switches are needed on the carrier board.

For EMI/ESD protection, common mode chokes on USB data lines, and clamping diodes on USB data and voltage lines, are also needed.

The schematics in the following page show an example of implementation on the Carrier Board. In there, USB ports #4, #5, #6 and #7 are carried out to standard USB 2.0 Type A receptacles, while USB 2.0 port #0, #1, #2 and 3 along with the corresponding Superspeed USB ports, are carried to standard USB 3.0 Type A receptacles. Always remember that, for correct implementation of USB 3.0 connections, any Superspeed port must be paired with corresponding number of USB 2.0 port #0 must be paired with USB 3.0 port #0 and so on).

3.2.4.7 LVDS Flat Panel signals

The AMD Ryzen[™] Embedded V1000 processors offer four native Digital Display interfaces, which can support Display Port, embedded Display Port, DVI, or HDMI interfaces. The LVDS interface, which is frequently used in many application fields, is not directly supported by these SoCs.

For this reason, as a factory option, COMe-B75-CT6 modules can be equipped with an eDP to LVDS bridge (NXP PTN3460), which allow the implementation of a Dual Channel LVDS, with a maximum supported resolution of 1920x1200 @ 60Hz (dual channel mode).

Ţ

Please remember that LVDS interface is not native for AMD Ryzen[™] Embedded V1000 processors, it is derived from an optional eDP-to-LVDS bridge. Depending on the factory option purchased, on the same pins there can be the LVDS first channel **or** eDP interface.

When placing an order of COMe-B75-CT6 modules, please take care of specifying if it is necessary LVDS interface or eDP interface.

Here following the signals related to LVDS management:

LVDS_A0+/LVDS_A0-: LVDS Channel #A differential data pair #0.

LVDS A1+/LVDS A1-: LVDS Channel #A differential data pair #1.

LVDS_A2+/LVDS_A2-: LVDS Channel #A differential data pair #2.

LVDS_A3+/LVDS_A3-: LVDS Channel #A differential data pair #3.

LVDS A CLK+/LVDS A CLK-: LVDS Channel #A differential clock.

LVDS_B0+/LVDS_B0-: LVDS Channel #B differential data pair #0.

LVDS_B1+/LVDS_B1-: LVDS Channel #B differential data pair #1.

LVDS_B2+/LVDS_B2-: LVDS Channel #B differential data pair #2.

LVDS_B3+/LVDS_B3-: LVDS Channel #B differential data pair #3.

LVDS_B_CLK+/LVDS_B_CLK-: LVDS Channel #B differential Clock

LVDS_VDD_EN: Panel Power Enable signal, electrical level +3.3V_RUN with a 10kΩ pull-down resistor. It can be used to turn On/Off the connected LVDS display.

LVDS_BKLT_EN: Panel Backlight Enable signal, electrical level $+3.3V_{\rm electrical}$ with a $10k\Omega$ pull-down resistor. It can be used to turn On/Off the backlight's lamps of connected LVDS display.

LVDS_BKLT_CTRL: this signal can be used to adjust the panel backlight brightness in displays supporting Pulse Width Modulated (PWM) regulations. +3.3V_RUN electrical level output.

LVDS_I2C_DAT: DisplayID DDC Data line for LVDS flat Panel detection. Bidirectional signal, electrical level +3.3V_RUN.

LVDS_I2C_CK: DisplayID DDC Clock line for LVDS flat Panel detection. Bidirectional signal, electrical level +3.3V_RUN.

3.2.4.8 Embedded Display Port (eDP) signals

As described in the previous paragraph, the AMD Ryzen[™] Embedded V1000 processors offer four Digital Display Interfaces.

As a factory option, one of these interfaces (DDI3) can be switched toward COM Express connector AB. When the board is not configured with the eDP-to-LVDS bridge, then the switched DDI interface supports eDP displays. Depending on the number of eDP lanes used (1, 2 or 4) it is possible to support the higher resolution displays.

Here following the signals related to eDP management:

eDP_TXO+/eDP_TXO-: eDP channel differential data pair #0.

eDP_TX1+/eDP_TX1-: eDP channel differential data pair #1.

eDP_TX2+/eDP_TX2-: eDP channel differential data pair #2.

eDP_TX3+/eDP_TX3-: eDP channel differential data pair #3.

eDP_AUX+/eDP_AUX-: eDP channel differential auxiliary channel.

eDP_HPD: eDP channel Hot Plug Detect. Active High Signal, $+3.3V_RUN$ electrical level input with $100K\Omega$ pull-down resistor.

eDP_VDD_EN: Panel Power Enable signal, electrical level +3.3V_RUN with a 10kΩ pull-down resistor. It can be used to turn On/Off the connected display.

eDP_BKLT_EN: Panel Backlight Enable signal, electrical level $+3.3V_RUN$ with a $10k\Omega$ pull-down resistor. It can be used to turn On/Off the backlight's lamps of connected display.

eDP_BKLT_CTRL: this signal can be used to adjust the panel backlight brightness in displays supporting Pulse Width Modulated (PWM) regulations. +3.3V_RUN electrical level output.

3.2.4.9 LPC interface signals

According to COM Express® specifications rel. 3.0, on the on COM Express connector AB there are 9 pins that are used for implementation of Low Pin Count (LPC) Bus interface.

The following signals are available:

LPC_AD[0÷3]: LPC address, command and data bus, bidirectional signal, +3.3V_RUN electrical level.

LPC_CLK: LPC Clock Output line, +3.3V_RUN electrical level. Since only a clock line is available, if more LPC devices are available on the carrier board, then it is necessary to provide for a zero-delay clock buffer to connect all clock lines to the single clock output of COM Express module.

LPC_DRQ0#: LPC Serial DMA request, +3.3V_RUN electrical level input signals, active low. This signal is used to request DMA or bus master access.

LPC_FRAME#: LPC Frame indicator, active low output line, +3.3V_RUN electrical level. This signal is used to signal the start of a new cycle of transmission, or the termination of existing cycles due to abort or time-out condition.

LPC_SERIRQ: LPC Serialised IRQ request, bidirectional line, +3.3V_RUN electrical level. This signal is used only by peripherals requiring Interrupt support.

Although COM Express® specifications rel. 3.0 foresee that LPC and eSPI interfaces can share the same pins, on COMe-B75-CT6 module only LPC interface is supported

3.2.4.10 SPI interface signals

The AMD Ryzen[™] Embedded V1000 processors offer also one dedicated controller for Serial Peripheral Interface (SPI), which can be used for connection of Serial Flash devices. Please be aware that this interface should be used exclusively to support platform firmware (BIOS).

Signals involved with SPI management are the following:

SPI_CS#: SPI Chip select, active low output signal, $+1.8V_S$ voltage level with $100k\Omega$ pull-up resistor.

SPI_MISO: SPI Master In Slave Out, Input to COM Express® module from SPI devices embedded on the Carrier Board. $+1.8V_{ALW}$ voltage level with $10k\Omega$ pull-up resistor.

SPI_MOSI: SPI Master Out Slave In, Output from COM Express® module to SPI devices embedded on the Carrier Board. +1.8V_ALW voltage level.

SPI_CLK: SPI Clock Output to carrier board's SPI embedded devices. $+1.8V_ALW$ voltage level with $10k\Omega$ pull-up resistor. Clock frequencies up to 66MHz are supported.

SPI_POWER: Power Supply Output for carrier board's SPI devices. +1.8V_S voltage level.

BIOS_DIS[0..1]#: BIOS Disable strap input, electrical level $+3.3V_{ALW}$ with $10k\Omega$ pull-up resistor. These two signals are inputs of the COM Express® Module, that on the carrier board can be left floating or pulled down in order to select which SPI Flash device has to be used for module's boot. Please refer to table 4.13 of COM Express® Module Base Specifications rel. 2.1 for the meaning of possible configurations of these two signals.

3.2.4.11 Digital Display interfaces

The AMD Radeon™ VEGA GPUs, embedded inside the AMD Ryzen™ Embedded V1000 processors, offer four Digital Display Interfaces, which can support DP, eDP, DVI and/or HDMI interfaces.

DDI ports #0, #1 and #2 are always carried out to COM Express connector CD, while DDI port #3 can be used to implement, on COM Express connector AB, the LVDS interface or the eDP interface (see also paragraphs 3.2.4.7 and 3.2.4.8).

The DDI ports can be used for the implementation, on the carrier board, of HDMI/DVI or Multimode Display Port interfaces.

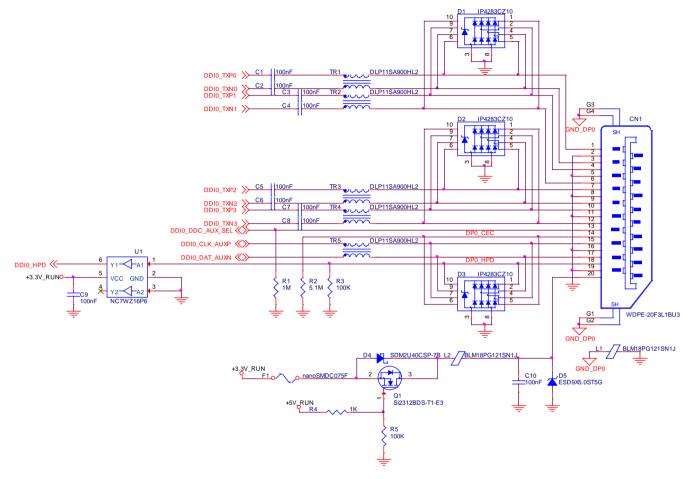
Switching between HDMI/DVI (or, more correctly, TMDS) and Display Port is dynamic, i.e. the interfaces coming out from COM Express® module can be used to implement a multimode Display Port interface (and in this way only AC coupling capacitors are needed on the carrier board) or a HDMI/DVI interface (an in this case TMDS level shifters are needed).

This is reached by multiplexing DP/HDMI interfaces on the same pins.

Depending by the interface chosen, therefore, on COM Express connector CD there will be available the following signals:

	Digital Display Interfaces - Pin multiplexing					
		Mu	ltimode Display Port mode	TMDS (HDMI/DVI) mode		
Pin nr.	Pin name	Signal	Description	Signal	Description	
D26	DDI1_PAIR0+	DP1_LANE0+	DP1 Differential pair #0 non-inverting line	TMDS1_DATA2+	TMDS1 Differential pair #2 non-inverting line	
D27	DDI1_PAIR0-	DP1_LANE0-	DP1 Differential pair #0 inverting line	TMDS1_DATA2-	TMDS1 Differential pair #2 inverting line	
D29	DDI1_PAIR1+	DP1_LANE1+	DP1 Differential pair #1 non-inverting line	TMDS1_DATA1+	TMDS1 Differential pair #1 non-inverting line	
D30	DDI1_PAIR1-	DP1_LANE1-	DP1 Differential pair #1 inverting line	TMDS1_DATA1-	TMDS1 Differential pair #1 inverting line	
D32	DDI1_PAIR2+	DP1_LANE2+	DP1 Differential pair #2 non-inverting line	TMDS1_DATA0+	TMDS1 Differential pair #0 non-inverting line	
D33	DDI1_PAIR2-	DP1_LANE2-	DP1 Differential pair #2 inverting line	TMDS1_DATA0-	TMDS1 Differential pair #0 inverting line	
D36	DDI1_PAIR3+	DP1_LANE3+	DP1 Differential pair #3 non-inverting line	TMDS1_CLK+	TMDS1 Differential clock non-inverting line	
D37	DDI1_PAIR3-	DP1_LANE3-	DP1 Differential pair #3 inverting line	TMDS1_CLK-	TMDS1 Differential clock inverting line	
C24	DDI1_HPD	DP1_HPD	DP1 Hot Plug Detect signal	HDMI1_HPD	HDMI #1 Hot Plug Detect signal	
D15	DDI1_CTRLCLK_AUX+	DP1_AUX+	DP1 Auxiliary channel non-inverting line	HDMI1_CTRLCLK	DDC Clock line for HDMI panel #1.	
D16	DDI1_CTRLDATA_AUX-	DP1_AUX-	DP1 Auxiliary channel inverting line	HDMI1_CTRLDATA	DDC Data line for HDMI panel #1.	
D34	DDI1_DDC_AUX_SEL	DDI#1 DP or TMDS i	nterface selector: pull this signal low or leave it flo	oating for DP++ interface	ce, pull high (+3.3V_RUN) for TMDS interface	
D39	DDI2_PAIR0+	DP2_LANE0+	DP2 Differential pair #0 non-inverting line	TMDS2_DATA2+	TMDS2 Differential pair #2 non-inverting line	
D40	DDI2_PAIRO-	DP2_LANEO-	DP2 Differential pair #0 inverting line	TMDS2_DATA2-	TMDS2 Differential pair #2 inverting line	

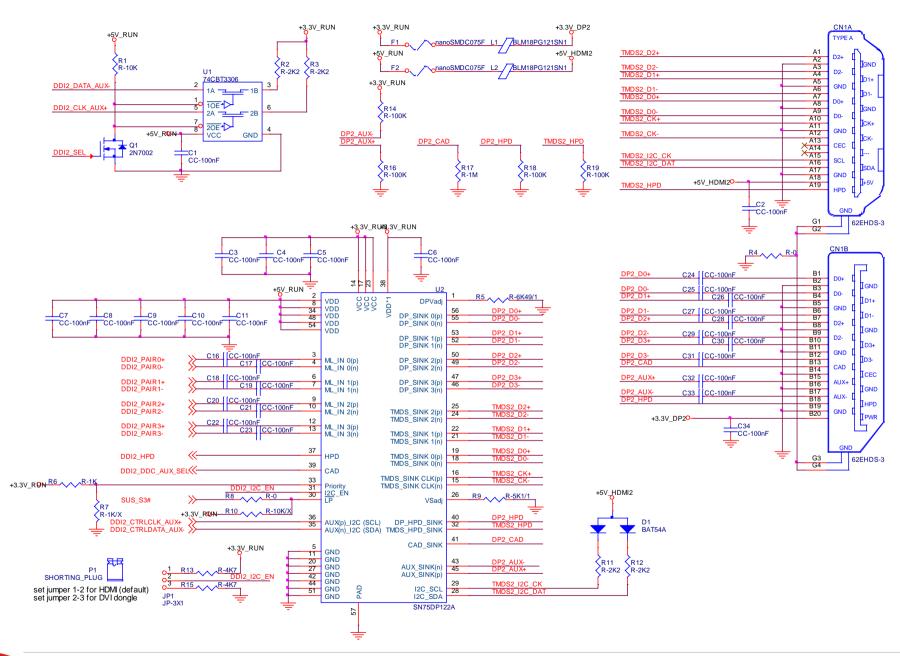
D42	DDI2_PAIR1+	DP2_LANE1+	DP2 Differential pair #1 non-inverting line	TMDS2_DATA1+	TMDS2 Differential pair #1 non-inverting line
D43	DDI2_PAIR1-	DP2_LANE1-	DP2 Differential pair #1 inverting line	TMDS2_DATA1-	TMDS2 Differential pair #1 inverting line
D46	DDI2_PAIR2+	DP2_LANE2+	DP2 Differential pair #2 non-inverting line	TMDS2_DATA0+	TMDS2 Differential pair #0 non-inverting line
D47	DDI2_PAIR2-	DP2_LANE2-	DP2 Differential pair #2 inverting line	TMDS2_DATA0-	TMDS2 Differential pair #0 inverting line
D49	DDI2_PAIR3+	DP2_LANE3+	DP2 Differential pair #3 non-inverting line	TMDS2_CLK+	TMDS2 Differential clock non-inverting line
D50	DDI2_PAIR3-	DP2_LANE3-	DP2 Differential pair #3 inverting line	TMDS2_CLK-	TMDS2 Differential clock inverting line
D44	DDI2_HPD	DP2_HPD	DP2 Hot Plug Detect signal	HDMI2_HPD	HDMI #2 Hot Plug Detect signal
C32	DDI2_CTRLCLK_AUX+	DP2_AUX+	DP2 Auxiliary channel non-inverting line	HDMI2_CTRLCLK	DDC Clock line for HDMI panel #2
C33	DDI2_CTRLDATA_AUX-	DP2_AUX-	DP2 Auxiliary channel inverting line	HDMI2_CTRLDATA	DDC Data line for HDMI panel #2.
C34	DDI2_DDC_AUX_SEL	DDI#2 DP or TMDS i	nterface selector: pull this signal low or leave floa	ating for DP++ interface	e, pull high (+3.3V_RUN) for TMDS interface
C39	DDI3_PAIR0+	DP3_LANE0+	DP3 Differential pair #0 non-inverting line	TMDS3_DATA2+	TMDS3 Differential pair #2 non-inverting line
C40	DDI3_PAIRO-	DP3_LANE0-	DP3 Differential pair #0 inverting line	TMDS3_DATA2-	TMDS3 Differential pair #2 inverting line
C42	DDI3_PAIR1+	DP3_LANE1+	DP3 Differential pair #1 non-inverting line	TMDS3_DATA1+	TMDS3 Differential pair #1 non-inverting line
C43	DDI3_PAIR1-	DP3_LANE1-	DP3 Differential pair #1 inverting line	TMDS3_DATA1-	TMDS3 Differential pair #1 inverting line
C46	DDI3_PAIR2+	DP3_LANE2+	DP3 Differential pair #2 non-inverting line	TMDS3_DATA0+	TMDS3 Differential pair #0 non-inverting line
C47	DDI3_PAIR2-	DP3_LANE2-	DP3 Differential pair #2 inverting line	TMDS3_DATA0-	TMDS3 Differential pair #0 inverting line
C49	DDI3_PAIR3+	DP3_LANE3+	DP3 Differential pair #3 non-inverting line	TMDS3_CLK+	TMDS3 Differential clock non-inverting line
C50	DDI3_PAIR3-	DP3_LANE3-	DP3 Differential pair #3 inverting line	TMDS3_CLK-	TMDS3 Differential clock inverting line
C44	DDI3_HPD	DP3_HPD	DP3 Hot Plug Detect signal	HDMI3_HPD	HDMI #3 Hot Plug Detect signal
C36	DDI3_CTRLCLK_AUX+	DP3_AUX+	DP3 Auxiliary channel non-inverting line	HDMI3_CTRLCLK	DDC Clock line for HDMI panel #3.
C37	DDI3_CTRLDATA_AUX-	DP3_AUX-	DP3 Auxiliary channel inverting line	HDMI3_CTRLDATA	DDC Data line for HDMI panel #3.
C38	DDI3_DDC_AUX_SEL	DDI#3 DP or TMDS i	nterface selector: pull this signal low or leave floa	ating for DP++ interface	e, pull high (+3.3V_RUN) for TMDS interface


All Hot Plug Detect Input signals (valid both for DP++ and TMDS interface) are active high inputs with $100K\Omega$ pull-down resistors. According to COM Express specifications, the carrier board must provide for Hot Plug Detect signal's buffering in order to prevent back feeding of power in the event that the monitor is powered up when the Carrier Board is powered down

Please be aware that for correct implementation of HDMI/DVI interfaces, it is necessary to implement, on the Carrier board, voltage level shifter for TMDS differential pairs, for Control data/Clock signals and for Hot Plug Detect signal.

Voltage clamping diodes are also highly recommended on all signal lines for ESD suppression.

In the next page, an example of implementation of multimode Display Port on the carrier board. In this example, are used signals related to Digital Display interface #1, but any DDI interface can be used.



The example schematics in the following page, instead, shows the implementation (using DDI interface #2, but any DDI can be used for this purpose) of a double connector DP++ and HDMI, managed using a DisplayPort 1:2 Switch with Integrated TMDS Translator, which provides to TMDS voltage level shifter for HDMI/DVi connection.

By implementing such a schematic, the module can configure itself automatically to work with external HDMI/DVI or multimode Display Port interfaces, depending on the cable connected. In case both an HDMI and a DP are connected, the HDMI interface will take priority automatically. This order can be changed by removing resistor R6 and mounting resistor R7.

The jumper JP1 is used to enable or disable switch's I2C internal registers, for use of TMDS interface, respectively, for HDMI or DVI displays.

3.2.4.12 Serial Port interface signals

According to COM Express® Rel. 3.0 specifications, since the COMe-B75-CT6 is a Type 6 module, it can offer two High Speed UART (HS UARTs) interfaces, which are managed by the AMD SoC.

Here following the signals related to UART interface:

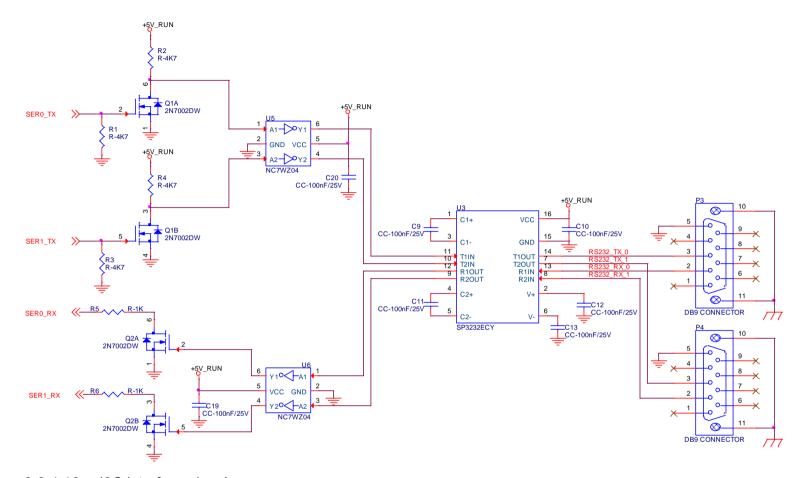
SERO_TX: HS UART Interface #0, Serial data Transmit (output) line, 3.3V_RUN electrical level.

SERO_RX: HS UART Interface #0, Serial data Receive (input) line, 3.3V_RUN electrical level with a $47k\Omega$ pull-up resistor.

SER1_TX: HS UART Interface #1, Serial data Transmit (output) line, 3.3V_RUN electrical level.

SER1_RX: HS UART Interface #1, Serial data Receive (input) line, 3.3V_RUN electrical level with a $47k\Omega$ pull-up resistor.

In COM Express® specifications prior to Rel. 2.0, the pins dedicated to these two UART interfaces were dedicated to $+12V_{IN}$ power rail. In order to prevent damages to the module, in case it is inserted in carrier board not designed for Type 6, then Schottky-diodes have been added on UART interfaces' TX and RX lines so that they are +12V Tolerant.


Please consider that interface is at TTL electrical level; therefore, please evaluate well the typical scenario of application. If it is not explicitly necessary to interface directly at TTL level, for connection to standard serial ports commonly available (like those offered by common PCs, for example) it is mandatory to include an RS-232 transceiver on the carrier board.

The schematic on the next page shows an example of implementation of RS-232 transceiver for the Carrier board.

Please be aware that the UARTs offered by the AMD SoCs are HS UARTs and not standard (legacy) COM ports.

Linux is able to manage them anyway, while Windows recognizes these interfaces as HS UART devices, not as legacy COM ports. This means that using Windows it is necessary to use specific drivers for the devices connected, it is not possible to use them using standard communication software like Tera Term, Putty...

3.2.4.13 I2C interface signals

This interface is managed by the embedded microcontroller.

Signals involved are the following

I2C_CK: general purpose I2C Bus clock line. Bidirectional signal, electrical level $+3.3V_{ALW}$ with a $2K2\Omega$ pull-up resistor.

I2C_DAT: general purpose I2C Bus data line. Bidirectional signal, electrical level $+3.3V_ALW$ with a $2K2\Omega$ pull-up resistor.

3.2.4.14 Miscellaneous signals

Here following, a list of COM Express® compliant signals that complete the features of COMe-B75-CT6 module.

SPKR: Speaker output, +3.3V_RUN voltage signal, managed by the AMD Ryzen™ Embedded V1000 processors.

WDT: Watchdog event indicator Output. It is an active high signal, +3.3V_RUN voltage. When this signal goes high (active), it reports out to the devices on the Carrier board that internal Watchdog's timer expired without being triggered, neither via HW nor via SW. This signal is managed by the module's embedded microcontroller.

FAN_PWM_OUT*: PWM output for FAN speed management, +3.3V_RUN voltage signal. It is managed by the module's embedded microcontroller.

FAN_TACHIN*: External FAN Tachometer Input. +3.3V_RUN voltage signal, directly managed by the module's embedded microcontroller.

TPM_PP: Trusted Platform Module (TPM) Physical Presence pin. This signal is used to indicate Physical Presence to the optional TPM device onboard. It is an active high input signal.

THRM#: Thermal Alarm Input. Active Low signal, $+3.3V_RUN$ voltage with $10k\Omega$ pull-up resistor, managed by the module's embedded microcontroller. This input gives the possibility, to carrier board's hardware, to indicate to the main module an overheating situation, so that the CPU can begin thermal throttling.

THRMTRIP#: Active Low +3.3V_RUN voltage output signal. This signal is used to communicate to the carrier board's devices that, due to excessive overheating, the SoC began the shutdown in order to prevent physical damages.

* Note: In COM Express® specifications prior to Rel. 2.0, the pins dedicated to FAN management were dedicated to +12V_{IN} power rail. In order to prevent damages to the module, in case it is inserted in carrier board not designed for Type 6, then protection circuitry has been added on FAN_PWM_OUT and FAN_TACHOIN lines so that they are +12V Tolerant.

3.2.4.15 Power Management signals

According to COM Express® specifications, on the connector AB there is a set of signals that are used to manage the power rails and power states.

The signals involved are:

PWRBTN#: Power Button Input, active low, $+3.3V_{ALW}$ voltage signal with $4k7\Omega$ pull-up resistor. When working in ATX mode, this signal can be connected to a momentary push-button: a pulse to GND of this signal will switch power supply On or Off.

SYS_RESET#: Reset Button Input, active low, $+3.3V_ALW$ voltage signal with $4k7\Omega$ pull-up resistor. This signal can be connected to a momentary push-button: a pulse to GND of this signal will reset the COMe-B75-CT6 module.

CB_RESET#: System Reset Output, active low, +3.3V_RUN voltage buffered signal. It can be used directly to drive externally a single RESET Signal. In case it is necessary to supply Reset signal to multiple devices, a buffer on the carrier board is needed.

PWR_OK: Power Good Input, $+3.3V_{\rm R}$ UN active high signal with $100k\Omega$ pull-up resistor. It must be driven by the carrier board to signal that power supply section is ready and stable. When this signal is asserted, the module will begin the boot phase. The signal must be kept asserted for all the time that the module is working.

SUS_STAT#: Suspend status output, active low $+3.3V_RUN$ electrical voltage signal with $10k\Omega$ pull-up resistor. This output can be used to report to the devices on the carrier board that the module is going to enter in one of possible ACPI low-power states.

SUS_S3#: S3 status output, active low +3.3V_ALW electrical voltage signal. This signal must be used, on the carrier board, to shut off the power supply to all the devices that must become inactive during S3 (Suspend to RAM) power state.

SUS_S4#: connected to SUS_S5# (see below).

SUS_S5#: S5 status output, active low +3.3V_ALW electrical voltage signal. This signal is used, on the carrier board, to shut off the power supply to all the devices that must become inactive only during S4 (Suspend to Disk) or S5 (Soft Off) power states.

WAKEO#: PCI Express Wake Input, active low $+3.3V_ALW$ electrical voltage signal with $10k\Omega$ pull-up resistor. This signal can be driven low, on the carrier board, to report that a Wake-up event related to PCI Express has occurred, and consequently the module must turn itself on. It can be left unconnected if not used.

WAKE1#: General Purpose Wake Input, active low $+3.3V_{ALW}$ electrical voltage signal with $2k2\Omega$ pull-up resistor. It can be driven low, on the carrier board, to report that a general Wake-up event has occurred, and consequently the module must turn itself on. It can be left unconnected if not used.

BATLOW#: Battery Low Input, active low, +3.3V_ALW voltage signal. This signal can be driven on the carrier board to signal that the system battery is low, or that some battery-related event has occurred. It can be left unconnected if not used.

LID# *: LID button Input, active low $+3.3V_{ALW}$ electrical level signal, with $10k\Omega$ pull-up resistor. This signal can be driven, using a LID Switch on the carrier board, to trigger the transition of the module from Working to Sleep status, or vice versa. It can be left unconnected if not used on the carrier board.

SLEEP# *: Sleep button Input, active low $+3.3V_ALW$ electrical level signal, with $10k\Omega$ pull-up resistor. This signal can be driven, using a pushbutton on the carrier board, to trigger the transition of the module from Working to Sleep status, or vice versa. It can be left unconnected if not used on the carrier board.

* Note: In COM Express® specifications prior to Rel. 2.0, the pins dedicated to LID# and SLEEP# inputs were dedicated to +12V_{IN} power rail. Protection circuitry has been added on LID# and SLEEP# so that they are +12V Tolerant. This has been made in order to prevent damages to the module, in case it is inserted in carrier board not designed for Type 6, then

3.2.4.16 SMBus signals

This interface is managed by the AMD Ryzen[™] Embedded V1000 processors' I2C Controller #2.

Signals involved are the following:

SMB_CK: SM Bus control clock line for System Management. Bidirectional signal, electrical level $+3.3V_{ALW}$ with a $4k7\Omega$ pull-up resistor.

SMB_DAT: SM Bus control data line for System Management. Bidirectional signal, electrical level $+3.3V_{ALW}$ with a $4k7\Omega$ pull-up resistor.

SMB_ALERT#: SM Bus Alert line for System Management. Input signal, electrical level $+3.3V_{ALW}$ with a $10k\Omega$ pull-up resistor. Any device place on the SM Bus can drive this signal low to signal an event on the bus itself.

3.2.4.17 GPIO/SDIO interface signals

According to COM Express® specifications rel. 3.0, there are 8 pins that can be used as General Purpose Inputs and Outputs OR as a SDIO interface.

The AMD Ryzen[™] Embedded V1000 processors share the SD Card interface with the LPC Bus, which is used to communicate with the Embedded controller.

For this reason, the COMe-B75-CT6 module use these pins only for the connection of four General Purpose Inputs and four General Purpose Outputs, which are managed though the embedded microcontroller.

Signals involved are the following:

GPI[0÷3]: General Purpose Inputs, electrical level +3.3V_ALW with $10k\Omega$ pull-up resistor each.

GPO[0÷3]: General Purpose Outputs, electrical level +3.3V_ALW with $10k\Omega$ pull-down resistor each.

3.2.5 BOOT Strap Signals

Configuration straps are signals that, during system reset, are set as inputs (independently by their behaviour during normal operations) in order to allow the proper configuration of the processor For this reason, on COMe-B75-CT6 are placed the pull-up or pull-down resistors that are necessary to configure the board properly.

The customer must avoid to place, on the carrier board, pull-up or pull-down resistors on signals that are used as strap signal, since it could result in malfunctions of COMe-B75-CT6 module.

The following signals are used as configuration straps by COMe-B75-CT6 module at system reset.

SPI_CLK: pin A94 of connector AB. Used to enable the internal Clock generator for SPI. Signal at +1.8V_ALW voltage level with 10kΩ pull-up resistor

SYS_RESET #: pin B49 of connector AB. Used to enable normal power up / reset mode. Signal at $+3.3V_ALW$ voltage level with a $47k\Omega$ pull-up resistor.

Chapter 4. BIOS SETUP

- Aptio setup Utility
- Main menu
- Advanced menu
- Chipset menu
- Security menu
- Boot menu
- Save & Exit menu

4.1 Aptio setup Utility

Basic setup of the board can be done using American Megatrends, Inc. "Aptio Setup Utility", that is stored inside an onboard SPI Serial Flash.

It is possible to access to Aptio Setup Utility by pressing the <ESC> key after System power up, during POST phase. On the splash screen that will appear, select "SCU" icon.

On each menu page, on left frame are shown all the options that can be configured.

Grayed-out options are only for information and cannot be configured.

Only options written in blue can be configured. Selected options are highlighted in white.

Right frame shows the key legend.

KEY LEGEND:

← / → Navigate between various setup screens (Main, Advanced, Security, Power, Boot...)

↑/↓ Select a setup item or a submenu

+ / - + and - keys allows to change the field value of highlighted menu item

<F1> The <F1> key allows displaying the General Help screen.

<F2> Previous Values

<F3> key allows loading Optimised Defaults for the board. After pressing <F3> BIOS Setup utility will request for a confirmation, before loading such default values. By pressing <ESC> key, this function will be aborted

<F4> <F4> key allows save any changes made and exit Setup. After pressing <F10> key, BIOS Setup utility will request for a confirmation, before saving and exiting. By pressing <ESC> key, this function will be aborted

<ENTER> <Enter> key allows to display or change the setup option listed for a particular setup item. The <Enter> key can also allow displaying the setup sub- screens.

It is possible to reset the UEFI BIOS Setup to Factory Defaults by using the dedicated switch available on module. Please check par. 3.2.3.

4.2 Main menu

When entering the Setup Utility, the first screen shown is the Main setup screen. It is always possible to return to the Main setup screen by selecting the Main tab. In this screen, are shown details regarding BIOS version, Processor type, Bus Speed and memory configuration.

Only two options can be configured:

4.2.1 System Time / System Date

Use this option to change the system time and date. Highlight System Time or System Date using the <Arrow> keys. Enter new values directly through the keyboard, or using + / - keys to increase / reduce displayed values. Press the <Enter> key to move between fields. The date must be entered in MM/DD/YY format. The time is entered in HH:MM:SS format.

Note: The time is in 24-hour format. For example, 5:30 A.M. appears as 05:30:00, and 5:30 P.M. as 17:30:00.

The system date is in the format mm/dd/yyyy.

4.3 Advanced menu

Menu Item	Options	Description
AMD CBS	See submenu	AMD CDS Setup Page
AMD PBS	See submenu	AMD PBS Setup Page
Intel® 1210 Gigabit Network Connection – MAC Address	See submenu	Configure Gigabit Ethernet device parameters.
Battery Failure manager	See submenu	Sets the action to be performed in case of battery failure
Trusted Computing	See submenu	Trusted Computing Settings
TPM Configuration	See submenu	TPM Selection
ACPI Settings	See submenu	System ACPI parameters
SATA presence	See submenu	SATA devices Configuration
DXIO Settings	See submenu	PEG, PCIE and DDI Lanes configuration
S5 RTC Wake Settings	See submenu	Enable System to wake from S5 using RTC alarm
Serial Port Console Redirection	See submenu	Serial Port Console redirection
CPU Configuration	See submenu	CPU Configuration Parameters
AMI Graphic Output Protocol Policy	See submenu	User Selected Monitor Output by Graphic Output protocol
PCI Subsystem Settings	See submenu	PCI Subsystem Settings
Network Stack Configuration	See submenu	Network Stack Settings
CSM Configuration	See submenu	Compatibility Support Module (CSM) Configuration: Enable/Disable, Option ROM execution Settings, etc
NVMe Configuration	See submenu	NVMe Device Options Settings
USB Configuration	See submenu	USB Configuration Parameters
Main Thermal Configuration	See submenu	Main thermal Configuration
SMBIOS Information	See submenu	SMBIOS Information
Embedded Controller	See submenu	Embedded Controller Parameters

4.3.1 AMD CBS submenu

Menu Item	Options	Description
NBIO Common options	See submenu	NorthBridge IO Configuration Options
FCH Common options	See submenu	Firmware Controller Hub Configuration options

4.3.1.1 NBIO Common Options submenu

Menu Item	Options	Description
GFX Configuration	See submenu	GFX Configuration options
IOMMU	Auto / Disabled / Enabled	Enable or disable the support for IOMMU (IO Memory Management Unit. Also known as AMD Virtualization™ Technology).
PSPP Policy	Disabled Performance Balanced-high Balanced-Low Power Saving Auto	PCle Speed Power policy: the processor can dynamically support the changing to the link frequency due to changes in system configuration and power policy.
System Configuration	12W POR Configuration/ 15W POR Configuration/ 25W POR Configuration/ 35W POR Configuration/ 45W POR Configuration/ 54W POR Configuration/ Auto	Allows selecting the Power Scheme configuration for the CPU. Warning: by selecting a precise configuration, may cause the system to hang, as some System Configurations may not be supported by your OPN.
Audio Codecs	All Enabled SDINO only All Disabled	Disable/Enable Audio Codecs input signals SDINx

4.3.1.1.1 GFX Configuration submenu

Menu Item	Options	Description
Integrated Graphics Controller	Auto / Disabled / Forces	Enable Integrated Graphics Controller. If disabled, all the remaining options will disappear
UMA Mode	Auto / UMA_Specified / UMA_Auto	Only available when Integrated Graphics Controller is set to "Forces". Allows setting the Unified Memory Architecture (UMA) Frame Buffer Size or Display Resolution
UMA Version	Legacy / Non-Legacy / Hybrid Secure / Auto	Only available when Integrated Graphics Controller is set to "Forces". Sets the supported UMA compatibility.
UMA Frame Buffer Size	Auto / 256M / 384M / 512M / 768M / 1G / 2G / 3G / 4G / 8G / 16G	Only available when "UMA Mode" is set to UMA_Specified. Sets UMA Frame Buffer Size
Display Resolution	1920X1080 and below / 2560x1600 / 3840x2160 / Auto	Only available when "UMA Mode" is set to UMA_Auto. Sets Display Resolution
Integrated HD Audio Controller	Auto / Disabled / Enabled	Enables or disabled integrated HD Audio Controller

4.3.1.2 FCH Common Options submenu

Menu Item	Options	Description
SATA Configuration Options	See submenu	SATA Configuration Options
Uart Configuration Options	See submenu	Uart Configuration Options

4.3.1.2.1 SATA Configuration submenu

Menu Item	Options	Description
SATA Controller	Auto / Disabled / Enabled	Enable or Disable on-chip SATA controller
SATA Mode	AHCI AHCI as ID 0x7904 Auto RAID	Only available when SATA Controller is set to "Enabled". Select on-chip SATA Type

4.3.1.2.2 Uart Configuration Options submenu

Menu Item	Options	Description
SER1 Enable SER0 Enable	Auto Disabled Enabled	Enable or Disable SER0 and SER1 ports available on COM Express connector AB.

4.3.2 AMD PBS submenu

Menu Item	Options	Description
AMD Firmware Version		Opens an information page with all details about the Firmware
Primary Video Adaptor	Int. Graphics (IGD) Ext. Graphics (PEG)	Allows to select if Internal Graphics controller (IGD) or external PCI-e Graphic Controller x8 (PEG) should be used as a Primary display

4.3.3 Intel® I210 Gigabit Network Connection – *Mac* Address submenu

Menu Item	Options	Description
NIC Configuration	See submenu	Allows configuring the network device port
Blink LEDs	015	Blink LEDs for a duration up to 15 seconds

4.3.3.1 NIC Configuration submenu

Menu Item	Options	Description
Link Speed	Auto Negotiated 10 Mbps Half 10 Mbps Full 100 Mbps Half 100 Mbps Full	Specifies the port speed used for the selected boot protocol
Wake On LAN	Disabled / Enabled	Enables or Disabled powering on the system via LVAN. Please note that configuring Wake On LAN in the OS does not change the value of this setting, but overrides the behavior of Wake on LAN in OS-controlled power states.

4.3.4 Battery Failure Manager submenu

N	Menu Item	Options	Description
E	Battery Failure Action	None Restore Defaults Restore NVRAM	Sets the action that must be done when a backup battery failure occurs. None: no action Restore defaults: restore BIOS factory default, preserving the password(s) Reset NVRAM: restore all factory defaults, clearing also the password(s)

4.3.5 Trusted computing submenu

Menu Item	Options	Description
Security Device Support	Disabled / Enabled	Enables or Disables BIOS Support for security devices. OS will not show Security Device, TCG EFI protocol and INT1A interface will not be available. When disabled, all following items will disappear.
Pending operation	None TPM Clear	Schedule an operation for the Security Device. Note: your computer will reboot during restart in order to change the State of Security Device.
Platform Hierarchy	Disabled / Enabled	Enable or Disable Platform Hierarchy
Storage Hierarchy	Disabled / Enabled	Enable or Disable Storage Hierarchy
Endorsement Hierarchy	Disabled / Enabled	Enable or Disable Endorsement Hierarchy
TPM2.0 UEFI Spec Version	TCG_1_2 TCG_2	Select the TCG2 Spec version Support. TCG_1_2 is the compatible mode for Windows 8 and Windows 10 TCG_2 supports the new TCG2 protocol and event format for Windows 10 and later
Physical Presence Spec Version	1.2 / 1.3	Tells the OS to support PPI Spec version 1.2 or 1.3. Note that some HCK tests might not support 1.3
Device Select	Auto TPM 1.2 TPM 2.0	TPM 1.2 will restrict the support to TPM 1.2 devices only, TPM 2.0 will restrict the support to TPM 2.0 devices only, Auto will support both with the default set to TPM 2.0 devices if not found, TPM 1.2 devices will be enumerated

4.3.6 TPM selection submenu

Menu Item	Options	Description
TPM selection	AMD CPU fTPM LPC TPM	Allows to choose whether using AMD processor Firmware TPM or use onboard (optional) LPC TPM

4.3.7 ACPI Settings

Menu Item	Options	Description
Enable ACPI Auto Configuration	Disabled / Enabled	Enables or Disables BIOS ACPI Auto Configuration. The following menu items will appear only when this menu item is Disabled
Enable Hibernation	Disabled / Enabled	Enables or disables system ability to Hybernate (OS/S4 Sleep State). This option may be not effective with some OS.
ACPI Sleep State	Suspend Disabled S3 (Suspend to RAM)	Select the highest ACPI Sleep state the system will enter when the SUSPEND button is pressed.
Lock Legacy resources	Disabled / Enabled	Enables or Disables Lock of Legacy resources

4.3.8 SATA presence submenu

Menu Item	Options	Description
SATA Port 0 SATA Port 1		Shows information related to eventual devices connected to SATA ports 0 or 1.

4.3.9 DXIO Settings submenu

Menu Item	Options	Description
DDI Port	See submenu	Allows enabling and configuring the single DDI ports
PEG lanes aggregation	1x8 2 x4	Allow selecting how the PCI Express Graphics (PEG) x16 lanes must be managed. Allowed configurations are: a single port x8 (default) or 2 ports x4
PEG Port	See submenu	Allows enabling and configuring the PEG port(s)
PCIe lanes aggregation	x1x1x1x1 x2x1x1 x2x2 x4	Allow selecting how the SOC's PCI Express lanes #0 #3 must be managed. Allowed configurations are: a single port x4, 2 ports x2, 1 port x2 + 2 ports x1 or 4 ports x1
PCI-E Port	See submenu	Allows enabling and configuring the PCI-e ports

4.3.9.1 DDI Port submenu

Menu Item	Options	Description
DDI 0 State DDI 1 State DDI 2 State	Disabled Enabled	Enable or Disable DDI ports 0, 1 and 2.
eDP/LVDS State	Disabled Enabled Force DP	Disable or enable eDP or LVDS Port (which one is available depends on module configuration)

4.3.9.2 PEG Port submenu

Menu Item	Options	Description
PEG0 port PEG1 port	Enabled / Disabled	Enable or disable each single PEG port (PEG port 1 will be available only in case PEG is managed as 2 PEG x4 ports). When enabled, all following items will appear.
ASPM Mode Control	Disable / LOs Entry	Disable or Enable PCI Express Active State Power Management
Link Speed	PCle Gen1 PCle Gen2 Max Speed Auto	Configures NB Root Port PCle Link Speed, which can however be overwritten by PSPP Settings
Hot Plug Mode Control	Auto Disabled Hotplug Basic Hotplug Server Hotplug Enhanced Hotplug Inboard	PCI Express Root Port Hot Plug Mode Control

4.3.9.3 PCI-E Port submenu

Menu Item	Options	Description
PCIE0 port PCIE1 port PCIE2 port PCIE3 port PCIE4/5 ports + Internal LAN	Enabled / Disabled	Enable or disable each single PCIE port (the ports effectively shown will depend on the Link aggregation). PCIE ports 4 and 5 can only be enabled or disabled at a same time, along with the Internal LAN. When enabled, all following items will appear.
ASPM Mode Control	Disable / LOs Entry	Disable or Enable PCI Express Active State Power Management
Link Speed	PCle Gen1 PCle Gen2 Max Speed Auto	Configures NB Root Port PCle Link Speed, which can however be overwritten by PSPP Settings
Hot Plug Mode Control	Auto Disabled Hotplug Basic Hotplug Server Hotplug Enhanced Hotplug Inboard	PCI Express Root Port Hot Plug Mode Control

4.3.10 S5 RTC Wake Settings submenu

Menu Item	Options	Description
Wake system from S5	Disabled By Every Day By Day of Month	Enables or disables System Wake on Alarm event. The following menu items will appear only when this voice is not set to Disabled
Wake up hour	023	Sets the wake up hour in 023 format (i.e.,3 means 3am, 15 means 3pm)
Wake up minute	059	Sets the wake up minute
Wake up second	059	Sets the wake up second
Day of Month	131	This item is available only when "Wake system from S5" is set to "By Day of Month". Sets the day of month for Wake on Alarm event. Valid range s from 1 to 31, error checking will be done against month/day/year combinations that are not valid.

4.3.11 Serial Port Console Redirection submenu

Menu Item	Options	Description
Console Redirection	Enabled / Disabled	Enable or disable Console redirection. This can be done both on Serial Port 0 and Serial Port 1 and for Windows Emergency Management Services (EMS) console.
Console Redirection Settings	See submenu	When any of the Serial port Console Redirections is enabled, this submenu will appear

4.3.11.1 Console Redirection Settings submenus

Menu Item	Options	Description
Terminal Type	VT_100 / VT_100+ / VT_UTF8 / ANSI	Set Console Redirection terminal type
Bits per second	115200 / 57600 / 38400 / 19200 / 9600	Set Console Redirection baud rate
Data Bits	7 / 8	Set Console Redirection data bits
Parity	None / Even / Odd / Mark / Space	Set Console Redirection parity bits
Stop Bits	1/2	Set Console Redirection stop bits
Flow Control	None Hardware RTS/CTS	Set Console Redirection flow control type
VT-UTF8 Combo Key Support	Enabled / Disabled	Enable or Disable VT-UTF8 Combination Key Support for ANSI/VT100 terminals
Recorder Mode	Enabled / Disabled	With this mode enabled only text will be sent. This is to capture Terminal data.
Resolution 100x31	Enabled / Disabled	Enables or disables extended terminal resolution
Putty Keypad	VT100 / Linux / XTermr6 / SCO / ESCN / VT400	Select FunctionKey and KeyPad on Putty

4.3.12 CPU configuration submenu

Menu Item	Options	Description
PSS Support	Enabled / Disabled	Enable/disable the generation of ACPU _PCC, _PSS and _PCT objects
PPC Adjustment	PState 0	Only Available when PSS Support is enabled
NX Mode	Enabled / Disabled	Enables or Disables No-execute Page Protection Function
SVM Mode	Enabled / Disabled	Enables or disables CPU Virtualization
PSTATE Adjustment	PState 0 / Pstate 1 / Pstate 2 / Pstate 3 / Pstate 4 / Pstate 5 / Pstate 6 / Pstate 7	Provide to adjust startup P-state level
CPB Mode	Enabled / Disabled	Enables or disables CPB
C6 Mode	Enabled / Disabled	Enables or disables C6
Node 0 Information		Opens an information page with the Memory Information details related to Node 0

4.3.13 AMI graphic Output Protocol Policy submenu

Menu Item	Options	Description
Output Select	List of available / connected module's video interfaces	

4.3.14 PCI Subsystem Settings submenu

Menu Item	Options	Description
Above 4G Decoding		Globally Enabled or Disabled 64-bitcapable Devices to be decoded in Address Space above 4GB (only if system supports 64-bit PCI Decoding).
SR-IOV Support	Disabled / Enabled	If system has SR-IOV capable PCle Devices, this option Enables or Disables Single Root IO Virtualization Support.
BME DMA Mitigation	Disabled / Enabled	Re-enable Bus Master Attribute disabled during PCI enumeration for PCI Bridges after SMM has been locked

4.3.15 Network Stack configuration submenu

Menu Item	Options	Description
Network Stack	Enabled / Disabled	Enables or disables UEFI Network Stack. When enabled, following menu items will appear
Ipv4 PXE Support	Enabled / Disabled	Enables or disables IPV4 PXE Boot Support. If disabled, IPV4 PXE boot option will not be created
lpv4 HTTP Support	Enabled / Disabled	Enables or disables IPV4 HTTP Boot Support. If disabled, IPV4 HTTP boot option will not be created
Ipv6 PXE Support	Enabled / Disabled	Enables or disables IPV6 PXE Boot Support. If disabled, Ipv6 PXE boot option will not be created
lpv6 HTTP Support	Enabled / Disabled	Enables or disables IPV6 HTTP Boot Support. If disabled, Ipv6 HTTP boot option will not be created
IPSEC certificate	Enabled / Disabled	Support to Enable/Disable IPSEC certificate for Ikev.
PXE boot wait time	[05]	Wait time to press ESC key to abort the PXE boot
Media detect count	[150]	Number of times that the presence of media will be checked

4.3.16 CSM configuration submenu

Menu Item	Options	Description
CSM Support	Enabled / Disabled	Enables or disables the Compatibility Support Module (CSM) Support. When enabled, the following menu items will appear
GateA20 Active	Upon Request Always	Upon Request: GateA20 can be disabled using BIOS services, Always: do not allow disabling GateA20; this option is useful when any RT code is executed above 1MB.
INT19 Trap Response	Immediate Postponed	BIOS Reaction on INT19 trapping by Option ROM: IMMEDIATE - execute the trap right away; POSTPONED - execute the trap during legacy boot
Boot option filter	UEFI and Legacy Legacy only UEFI only	This option controls Legacy / UEFI ROMs priority
Network	Do not launch UEFI Legacy	Controls the execution of UEFI and Legacy PXE OpROM
Storage	Do not launch UEFI Legacy	Controls the execution of UEFI and Legacy Storage OpROM
Video	Do not launch UEFI Legacy	Controls the execution of UEFI and Legacy Video OpROM
Other PCI devices	Do not launch UEFI Legacy	Determines the OpROM execution policy for devices other than Network, Storage and Video

4.3.17 NVMe configuration submenu

NVMe Device Options Settings, depend on NVMe Devices found in the system.

4.3.18 USB configuration submenu

Menu Item	Options	Description
Legacy USB Support	Enabled / Disabled / Auto	Enables Legacy USB Support. AUTO Option disables legacy support if no USB devices are connected. DISABLE option will keep USB devices available only for EFI applications.
XHCI hand-off	Enabled/ Disabled	This is a workaround for OSes without XHCI hand-off support. The XHCI ownership change should be claimed by XHCI driver.
USB Mass Storage Driver Support	Enabled/ Disabled	Enables or disables USB Mass Storage Driver Support
USB Transfer time-out	1 sec / 5 sec / 10 sec / 20 sec	Sets the time-out value for Control, Bulk and Interrupt transfers
Device reset time-out	10 sec / 20 sec / 30 sec / 40 sec	USB mass storage device Start Unit command time-out
Device power-up delay	Auto / Manual	Sets the maximum time that the device will take before it properly reports itself to the Host controller. 'Auto' uses the default vale (for a Root port it is 100ms, for a Hub port the delay is taken from the Hub descriptor).
Device power-up delay in seconds	[140]	Delay range in seconds, in one second increment

4.3.19 Main Thermal Configuration submenu

Menu Item	Options	Description
Critical Temperature (°C)	80 100	Above this threshold, an ACPI aware OS will perform a critical shut-down. Allowed range is from 80 to 100, where 100 means disabled.
Passive Cooling Temperature (°C)	75 90	This value controls the temperature of the ACPI Passive Trip Point - the point in which the OS will begin lowering the CPU speed. Allowed range is from 75 to 90, where values above Critical Temperature means Disabled.

4.3.20 SMBIOS Information

Display only screen, shows information about the module and the Carrier board.

4.3.21 Embedded Controller submenu

Menu Item	Options	Description
Hardware Monitor		By selecting this item, an information screen with System parameters will appear
Watchdog configuration	See Submenu	Configures the Embedded Controller's Watchdog Timer
Internal FAN Settings	See Submenu	Sets the parameters for Internal (i.e. on-module) FAN
External FAN/PWM Settings	See Submenu	Sets the parameters for external (i.e. on-carrier FAN
COM- Express GPIO Configurations	See Submenu	Configures GPOs management
Reset Causes Handling		By selecting this item, an information screen with the handling of latest resets causes will appear.
Boot with battery low	Normal Force S5	When this item is set to Normal, BATLOW# signal will be ignored. When set to Force S5, the system is not allowed to leave S5 state until BATLOW# signal is asserted.
Batteryless Operation	Disabled / Enabled	Enable this item in case the CMOS Battery is not present.
Power Fail resume Type	Always ON Always OFF Last State	Specifies what must happen when power is re-applied after a power failure (G3 state). Always ON: the System will boot directly as soon as the power is applied. Always OFF: the system remain in power off State until power button is pressed
LID# Configuration	Force Open Force Closed Normal Polarity Inverted Polarity	Configures the LID_BTN# signal as always open or closed, no matter the pin level, or configures the pin polarity: High = Open (Normal), Low = Open (Inverted)
LID_BTN# Wake Configuration	No Wake Only From S3 Wake From S3/S4/S5	Configures LID_BTN# wake capability (when not forced to Open or Closed). According to the pin configuration, when the LID is open it can cause a system wake from a sleep state.
SLEEP# Wake	Disabled / Enabled	Disable or Enable SLEEP# Wake capability from S3/S4 state.
SMB_ALERT# Wake Configuration	No Wake Only From S3 Wake From S3/S4/S5	Configures SMB_ALERT# wake capability: when asserted, it can cause the system wake from a sleep state.

4.3.21.1 Watchdog Configuration submenu

Menu Item	Options	Description
Watchdog Status	Disabled / Enabled	Enables or disables the Watchdog. When diabled, all following items will disappear
Event action	Raisw WDT Signal Power Button Pulse None	Action executed at the expiring of the Event time-out.
Reset action	System Reset Power Button Override Raise WDT Signal	Action executed at the expiring of the reset time-out.
Watchdog Delay	0/1/2/4/8/16/32/64	Minutes before watchdog normal operations start. During delay time-out, a refresh operation will immediately trigger the normal operation.
Event Timeout	0/1/2/4/8/16/32/64	Time-out minutes that can pass without refresh before triggering the Event Action. A refresh will restart the time-out.
Reset Timeout	1/2/4/8/16/32/ 64	Time-out minutes that can pass without refresh before triggering the Reset Action, this timer will start counting when event time-out is expired A refresh will restart the time-out.

4.3.21.2 Internal FAN Settings submenu

Menu Item	Options	Description
Internal FAN Control	Enabled / Disabled	Disable or Enable Thermal Feedback FAN Control
AC0 Temperature (°C)	70 / 75 / 80 / 85 / 90 / 95 / 100	Only available when "Internal FAN Control" is Enabled Select the highest temperature above which the onboard fan must work always at Full Speed
AC1 Temperature (°C)	5 / 10 / 15 / 20 /25 / 30 / 35 / 40 / 45 / 50 / 55 / 60 / 65 / 70 / 75 / 80 / 85 / 90 / 95 / 100	Only available when "Internal FAN Control" is Enabled. Select the lowest temperature under which the onboard fan must be OFF.
Temperature Hysteresis	0 10	Only available when "Internal FAN Control" is Enabled. Value added (when temperature is growing) to the ACx thresholds or subtracted from them (when temperature is decreasing) to avoid oscillations.
FAN Duty Cycle (%) Above AC1	0 100	Only available when "Internal FAN Control" is Enabled. Use this item to set the Duty Cycle for the fan when the CPU temperature is between AC1 and AC0 threshold. Above AC0, the man will run at full speed.
FAN Duty Cycle (%) Above AC0	0 100	Only available when "Internal FAN Control" is Enabled. Use this item to set the Duty Cycle for the fan when the CPU temperature is above AC0 threshold.
Speed Change Duration	050	Only available when "Internal FAN Control" is Enabled. Duration in seconds of linear FAN Speed Change.
FAN Duty Cycle	0 100	Only available when "Internal FAN Control" is Disabled. Default FAN Duty Cycle (%).

4.3.21.3 External FAN/PWM Settings submenu

Menu Item	Options	Description
FAN_PWMOUT Device Type	3-Wire FAN 4-Wire FAN Generic PWM	Specifies if a 3-Wire (Default) or a 4-Wire FAN is connected to FAN_PWMOUT / FAN_TACHOIN signals. Generic PWM has to be used when the signal is not used to drive a FAN.
FAN_PWMOUT frequency	1 60.000	Sets the frequency of the FAN_PWMOUT signal. If fed to a FAN, typical values are 100 for a 3-Wire device and 20.000 for a 4-Wire one.
External FAN Control	0 100	Only available when "External FAN Type" is not set to Generic PWM. Disable or Enable Thermal Feedback FAN Control
AC0 Temperature (°C)	70 / 75 / 80 / 85 / 90 / 95 / 100	Only available when "External FAN Control" is Enabled Select the highest temperature above which the external fan must work always at Full Speed
AC1 Temperature (°C)	5 / 10 / 15 / 20 /25 / 30 / 35 / 40 / 45 / 50 / 55 / 60 / 65 / 70 / 75 / 80 / 85 / 90 / 95 / 100	Only available when "External FAN Control" is Enabled. Select the lowest temperature under which the external fan must be OFF.
Temperature Hysteresis	0 10	Only available when "External FAN Control" is Enabled. Value added (when temperature is growing) to the ACx thresholds or subtracted from them (when temperature is decreasing) to avoid oscillations.
FAN Duty Cycle (%) Above AC1	0 100	Only available when "External FAN Control" is Enabled. Use this item to set the Duty Cycle for the fan when the CPU temperature is between AC1 and AC0 threshold. Above AC0, the man will run at full speed.
Speed Change Duration	050	Only available when "External FAN Control" is Enabled. Duration in seconds of linear FAN Speed Change.
FAN Duty Cycle (%)	0 100	Only available when "FAN_PWMOUT Device Type" is not set to Generic PWM and External FAN Control is Disabled. Default FAN Duty Cycle (%)
FAN_PWMOUT Duty Cycle (%)	0100	Only available when "FAN_PWMOUT Device Type" is set to Generic PWM. Default FAN_PWMOUT Duty Cycle (%) during boot

4.3.21.4 COM-Express GPIO Configurations submenu

Menu Item	Options	Description
GPO0 GPO1 GPO2 GPO3	Low High Last	Fix the GPOx starting level. Last means no change with respect to the last boot.

4.4 Chipset menu

Menu Item	Options	Description
South Bridge	See Submenu	South Bridge Parameters
North Bridge	See Submenu	North Bridge Parameters

4.4.1 South Bridge Configuration submenu

Menu Item	Options	Description
SB USB Configuration	See submenu	USB configuration Settings

4.4.1.1 SB USB Configuration submenu

Menu Item	Options	Description
COM-Express USB 0 COM-Express USB 1 COM-Express USB2/USB3 COM-Express USB4/5/6/7	Enabled / Disabled	Enables or Disables every USB Port / group of USB ports.
USB OverCurrent	Enabled / Disabled	Enables or Disables USB OverCurrent Signals

4.4.2 North Bridge Configuration submenu

Menu Item	Options	Description
Memory Configuration	See submenu	Memory configuration Settings
Socket 0 Configuration Socket 1 Configuration		By selecting this item, an information screen with all information related to the memory module plugged in Socket #x will appear

4.4.2.1 Memory Configuration submenu

Menu Item	Options	Description
Memory Clock	Auto / 1333MHz / 1600MHz / 1866MHz/ 2133MHz / 2400MHz	This option allows the user to select different memory clocks. Default value is 800MHz
Bank Interleaving	Enabled / Disabled	Enables or disables memory bank interleaving
Channel Interleaving	Enabled / Disabled	Enables or disables memory channel interleaving
Memory Clear	Enabled / Disabled	Enables or disables memory clear function

4.5 Security menu

Menu Item	Options	Description
Administrator Password		Set Administrator Password
User Password		Set User Password (possible only if also Administrator Password has been set)
Secure Boot	See Submenu	Customizable Secure Boot Settings

4.5.1 Secure Boot submenu

Menu Item	Options	Description
Secure Boot	Enabled / Disabled	Secure Boot is activated when the Platform Key (PK) is enrolled, System Mode is User/Deployed and CSM function is disabled.
Secure Boot Customization	Standard / Custom	Set UEFI Secure Boot Mode to Standard Mode or Custom mode. In Custom Mode, Secure Boot Policy variables can be configured by a physically present user without full authentication
Restore Factory Keys		Only accessible when Secure Boot Mode is set to Custom Force System to User Mode. Install Factory default Secure Boot key databases.
Reset to Setup Mode		Delete all Secure Boot key databases from NVRAM
Key management	See submenu	Only accessible when Secure Boot Mode is set to Custom Enable expert users to modify Secure Boot Policy variables without full authentication

4.5.1.1 Key Management submenu

Menu Item	Options	Description
Factory Key Provision	Disabled / Enabled	Install factory default Secure Boot Keys after the platform reset and while the System is in Setup Mode
Restore Factory Keys		Force System to User Mode. Install factory Default Secure Boot key databases
Reset to Setup Mode		Delete all Secure Boot key databases from NVRAM
Export Secure Boot variables		Copy NVRAM content of Secure Boot variables to files in a root folder on a file system device
Enrol Efi Image	File System Image	Allow the selected image to run in Secure Boot mode. Enrol SHA256 Hash Certificates of a PE Image into Authorized Signature Database (db)
Remove 'UEFI CA' from DB		Device Guard ready system must not list 'Microsoft UEFI CA' Certificate in Authorized Signature Database (db)
Restore DB defaults		Restore DB variable to factory defaults
Platform key Key Exchange Keys Authorized Signatures Forbidden Signatures Authorized Timestamps OS Recovery Signatures	Details Export Update Delete	Enrol factory Defaults or load certificates from a file: 1. Public Key Certificate in: a) EFI_SIGNATURE_LIST b) EFI_CERT_X509 (DER) c) EFI_CERT_RSA2048 (bin) d) EFI_CERT_SHAXX 2. Authenticated UEFI variables 3. EFI PE/COFF Image (SHA256) Key Source: Factory, External, Mixed

4.6 Boot menu

Menu Item	Options	Description
Setup Prompt Timeout	0 65535	Number of seconds to wait for setup activation key. 655535 means indefinite waiting.
Bootup NumLock State	On / Off	Select the Keyboard NumLock State at boot
Quiet Boot	Enabled / Disabled	Enables or Disables Quiet Boot options
Fast Boot	Enabled / Disabled	When Fast Boot is enabled, most probes are skipped to reduce time cost during boot
New Boot Option Policy	Default Place First Place Last	Controls the placement of newly detected UEFI boot devices
Boot Mode Select	LEGACY UEFI	Select the boot mode between Legacy and UEFI
Boot Option #1 Boot Option #2 Boot Option #3 Boot Option #4 Boot Option #5 Boot Option #6	Hard Disk CD/DVD SD USB Device Network Other Device: ubuntu Disabled	Select the system boot order

Please be aware that by deault only UEFI boot is enabled. In this situation, when using legacy MBR drives, the system will not boot from them. To fully enable the boot form legacy drives, it is necessary to set the following items:

- Boot menu → "Boot mode select": must be set to Legacy
- Advanced menu → CSM Configuration submenu → "CSM support" must be Enabled
- Advanced menu → CSM Configuration submenu → "Video" must be set to Legacy

4.7 Save & Exit menu

Menu Item	Options	Description
Save Changes and Exit		Exit system setup after saving the changes.
Discard Changes and Exit		Exit system setup without saving any changes.
Save Changes and Reset		Reset the system after saving the changes.
Discard Changes and Reset		Reset the system without saving any changes.
Save Changes		Save the changes done so far to any of the setup options.
Discard Changes		Discard the changes done so far to any of the setup options.
Restore Defaults		Restore/Load Default values for all the setup options
Save as User Defaults		Save the changes done so far as User Defaults
Restore User Defaults		Restore the User Defaults to all the setup options
List of EFI boot options		
Launch EFI Shell from filesystem device		Attempt to Launch the EFI Shell application (Shell.efi) from one of the available filesystem devices

Chapter 5. Appendices

Thermal Design

5.1 Thermal Design

A parameter that has to be kept in very high consideration is the thermal design of the system.

Highly integrated modules, like COMe-B75-CT6 module, offer to the user very good performances in minimal spaces, therefore allowing the systems' minimisation. On the counterpart, the miniaturising of IC's and the rise of operative frequencies of processors lead to the generation of a big amount of heat, that must be dissipated to prevent system hang-off or faults.

COM Express® specifications take into account the use of a heatspreader, which will act only as thermal coupling device between the COM Express® module and an external dissipating surface/cooler. The heatspreader also needs to be thermally coupled to all the heat generating surfaces using a thermal gap pad, which will optimise the heat exchange between the module and the heatspreader.

The heatspreader is not intended to be a cooling system by itself, but only as means for transferring heat to another surface/cooler, like heatsinks, fans, heat pipes and so on.

Conversely, heatsink with fan in some situation can represent the cooling solution. Indeed, when using COMe-B75-CT6 module, it is necessary to consider carefully the heat generated by the module in the assembled final system, and the scenario of utilisation.

Until the module is used on a development Carrier board, on free air, just for software development and system tuning, then a finned heatsink with FAN could be sufficient for module's cooling. Anyhow, please remember that all depends also on the workload of the processor. Heavy computational tasks will generate much heat with all processor versions.

Therefore, it is always necessary that the customer study and develop accurately the cooling solution for his system, by evaluating processor's workload, utilisation scenarios, the enclosures of the system, the air flow and so on. This is particularly needed for industrial grade modules.

SECO can provide COMe-B75-CT6 specific heatspreaders and active heatsinks, but please remember that their use must be evaluated accurately inside the final system, and that they should be used only as a part of a more comprehensive ad-hoc cooling solutions.

Ordering Code	Description
MB75-DISS-1-PK	COMe-B75-CT6 Heat Spreader (passive) – packaged
MB75-DISS-3-PK	COMe-B75-CT6 Heat Sink (active) – packaged

SECO S.p.A. - Via Calamandrei 91 52100 Arezzo - ITALY Ph: +39 0575 26979 - Fax: +39 0575 350210 www.seco.com